Looking for help!
Name
Nasm::X86 - Generate X86 assembler code using Perl as a macro pre-processor.
Synopsis
Write and execute x64 Avx512 assembler code from perl using perl as a powerful macro assembler. The generated code can be run under the Intel emulator to obtain execution trace and instruction counts.
Please see: https://github.com/philiprbrenan/NasmX86 for a complete working demonstration of how to run code produced by this module.
While this module allows you to intermix Perl and Assembler code it is noticeable that the more Perl code that is written the less new Assembler code is required because there are more opportunities to call a Perl routine to generate the required Assembler code rather than writing the Assembler out by hand.
Examples
Further examples are visible at: https://github.com/philiprbrenan/NasmX86
Avx512 instructions
Use Avx512 instructions to perform 64 comparisons in parallel.
my $P = "2F"; # Value to test for
my $l = Rb 0; Rb $_ for 1..RegisterSize zmm0; # 0..63
Vmovdqu8 zmm0, "[$l]"; # Load data to test
PrintOutRegisterInHex zmm0;
Mov rax, "0x$P"; # Broadcast the value to be tested
Vpbroadcastb zmm1, rax;
PrintOutRegisterInHex zmm1;
for my $c(0..7) # Each possible test
{my $m = "k$c";
Vpcmpub $m, zmm1, zmm0, $c;
PrintOutRegisterInHex $m;
}
Kmovq rax, k0; # Count the number of trailing zeros in k0
Tzcnt rax, rax;
PrintOutRegisterInHex rax;
is_deeply Assemble, <<END; # Assemble and test
zmm0: 3F3E 3D3C 3B3A 3938 3736 3534 3332 3130 2F2E 2D2C 2B2A 2928 2726 2524 2322 2120 1F1E 1D1C 1B1A 1918 1716 1514 1312 1110 0F0E 0D0C 0B0A 0908 0706 0504 0302 0100
zmm1: 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F 2F2F
k0: 0000 8000 0000 0000
k1: FFFF 0000 0000 0000
k2: FFFF 8000 0000 0000
k3: 0000 0000 0000 0000
k4: FFFF 7FFF FFFF FFFF
k5: 0000 FFFF FFFF FFFF
k6: 0000 7FFF FFFF FFFF
k7: FFFF FFFF FFFF FFFF
rax: 0000 0000 0000 002F
END
With the print statements removed, the Intel Emulator indicates that 26 instructions were executed:
CALL_NEAR 1
ENTER 2
JMP 1
KMOVQ 1
MOV 5
POP 1
PUSH 3
SYSCALL 1
TZCNT 1
VMOVDQU8 1
VPBROADCASTB 1
VPCMPUB 8
*total 26
Description
Generate X86 assembler code using Perl as a macro pre-processor.
Version "20220606".
The following sections describe the methods in each functional area of this module. For an alphabetic listing of all methods by name see Index.
Data
Layout data
SetLabel($l)
Create (if necessary) and set a label in the code section returning the label so set.
Parameter Description
1 $l Label
Example:
Mov rax, 1;
Mov rdi, 1;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
RestoreFirstSeven;
PrintOutRegisterInHex rax, rdi;
RestoreFirstFour;
PrintOutRegisterInHex rax, rdi;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
RestoreFirstSevenExceptRax;
PrintOutRegisterInHex rax, rdi;
RestoreFirstFourExceptRax;
PrintOutRegisterInHex rax, rdi;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
Bswap rax;
PrintOutRegisterInHex rax;
my $l = Label;
Jmp $l;
SetLabel $l; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
ok Assemble(debug => 0, eq => <<END, avx512=>0);
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .... .... .... ...2
rdi: .... .... .... ...2
rax: .... .... .... ...1
rdi: .... .... .... ...1
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .... .... .... ...3
rdi: .... .... .... ...2
rax: .... .... .... ...3
rdi: .... .... .... ...1
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .3.. .... .... ....
END
ok 8 == RegisterSize rax;
Ds(@d)
Layout bytes in memory and return their label.
Parameter Description
1 @d Data to be laid out
Example:
my $q = Rs('a'..'z');
Mov rax, Ds('0'x64); # Output area # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Vmovdqu32(xmm0, "[$q]"); # Load
Vprolq (xmm0, xmm0, 32); # Rotate double words in quad words
Vmovdqu32("[rax]", xmm0); # Save
Mov rdi, 16;
PrintOutMemoryNL;
ok Assemble(avx512=>1, eq=><<END)
efghabcdmnopijkl
END
Db(@bytes)
Layout bytes in the data segment and return their label.
Parameter Description
1 @bytes Bytes to layout
Example:
my $s = Rb 0; Rb 1; Rw 2; Rd 3; Rq 4;
my $t = Db 0; Db 1; Dw 2; Dd 3; Dq 4; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Vmovdqu8 xmm0, "[$s]";
Vmovdqu8 xmm1, "[$t]";
PrintOutRegisterInHex xmm0;
PrintOutRegisterInHex xmm1;
Sub rsp, 16;
Mov rax, rsp; # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
Mov rdi, 16;
Mov rsi, $s;
CopyMemory(V(source => rsi), V(target => rax), V size => rdi);
PrintOutMemory_InHexNL;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
xmm0: .... .... .... ...4 .... ...3 ...2 .1..
xmm1: .... .... .... ...4 .... ...3 ...2 .1..
__.1 .2__ .3__ ____ .4__ ____ ____ ____
END
Dw(@words)
Layout words in the data segment and return their label.
Parameter Description
1 @words Words to layout
Example:
my $s = Rb 0; Rb 1; Rw 2; Rd 3; Rq 4;
my $t = Db 0; Db 1; Dw 2; Dd 3; Dq 4; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Vmovdqu8 xmm0, "[$s]";
Vmovdqu8 xmm1, "[$t]";
PrintOutRegisterInHex xmm0;
PrintOutRegisterInHex xmm1;
Sub rsp, 16;
Mov rax, rsp; # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
Mov rdi, 16;
Mov rsi, $s;
CopyMemory(V(source => rsi), V(target => rax), V size => rdi);
PrintOutMemory_InHexNL;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
xmm0: .... .... .... ...4 .... ...3 ...2 .1..
xmm1: .... .... .... ...4 .... ...3 ...2 .1..
__.1 .2__ .3__ ____ .4__ ____ ____ ____
END
Dd(@dwords)
Layout double words in the data segment and return their label.
Parameter Description
1 @dwords Double words to layout
Example:
my $s = Rb 0; Rb 1; Rw 2; Rd 3; Rq 4;
my $t = Db 0; Db 1; Dw 2; Dd 3; Dq 4; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Vmovdqu8 xmm0, "[$s]";
Vmovdqu8 xmm1, "[$t]";
PrintOutRegisterInHex xmm0;
PrintOutRegisterInHex xmm1;
Sub rsp, 16;
Mov rax, rsp; # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
Mov rdi, 16;
Mov rsi, $s;
CopyMemory(V(source => rsi), V(target => rax), V size => rdi);
PrintOutMemory_InHexNL;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
xmm0: .... .... .... ...4 .... ...3 ...2 .1..
xmm1: .... .... .... ...4 .... ...3 ...2 .1..
__.1 .2__ .3__ ____ .4__ ____ ____ ____
END
Dq(@qwords)
Layout quad words in the data segment and return their label.
Parameter Description
1 @qwords Quad words to layout
Example:
my $s = Rb 0; Rb 1; Rw 2; Rd 3; Rq 4;
my $t = Db 0; Db 1; Dw 2; Dd 3; Dq 4; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Vmovdqu8 xmm0, "[$s]";
Vmovdqu8 xmm1, "[$t]";
PrintOutRegisterInHex xmm0;
PrintOutRegisterInHex xmm1;
Sub rsp, 16;
Mov rax, rsp; # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
Mov rdi, 16;
Mov rsi, $s;
CopyMemory(V(source => rsi), V(target => rax), V size => rdi);
PrintOutMemory_InHexNL;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
xmm0: .... .... .... ...4 .... ...3 ...2 .1..
xmm1: .... .... .... ...4 .... ...3 ...2 .1..
__.1 .2__ .3__ ____ .4__ ____ ____ ____
END
Rb(@bytes)
Layout bytes in the data segment and return their label.
Parameter Description
1 @bytes Bytes to layout
Example:
my $s = Rb 0; Rb 1; Rw 2; Rd 3; Rq 4; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
my $t = Db 0; Db 1; Dw 2; Dd 3; Dq 4;
Vmovdqu8 xmm0, "[$s]";
Vmovdqu8 xmm1, "[$t]";
PrintOutRegisterInHex xmm0;
PrintOutRegisterInHex xmm1;
Sub rsp, 16;
Mov rax, rsp; # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
Mov rdi, 16;
Mov rsi, $s;
CopyMemory(V(source => rsi), V(target => rax), V size => rdi);
PrintOutMemory_InHexNL;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
xmm0: .... .... .... ...4 .... ...3 ...2 .1..
xmm1: .... .... .... ...4 .... ...3 ...2 .1..
__.1 .2__ .3__ ____ .4__ ____ ____ ____
END
Rw(@words)
Layout words in the data segment and return their label.
Parameter Description
1 @words Words to layout
Example:
my $s = Rb 0; Rb 1; Rw 2; Rd 3; Rq 4; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
my $t = Db 0; Db 1; Dw 2; Dd 3; Dq 4;
Vmovdqu8 xmm0, "[$s]";
Vmovdqu8 xmm1, "[$t]";
PrintOutRegisterInHex xmm0;
PrintOutRegisterInHex xmm1;
Sub rsp, 16;
Mov rax, rsp; # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
Mov rdi, 16;
Mov rsi, $s;
CopyMemory(V(source => rsi), V(target => rax), V size => rdi);
PrintOutMemory_InHexNL;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
xmm0: .... .... .... ...4 .... ...3 ...2 .1..
xmm1: .... .... .... ...4 .... ...3 ...2 .1..
__.1 .2__ .3__ ____ .4__ ____ ____ ____
END
Rd(@dwords)
Layout double words in the data segment and return their label.
Parameter Description
1 @dwords Double words to layout
Example:
my $s = Rb 0; Rb 1; Rw 2; Rd 3; Rq 4; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
my $t = Db 0; Db 1; Dw 2; Dd 3; Dq 4;
Vmovdqu8 xmm0, "[$s]";
Vmovdqu8 xmm1, "[$t]";
PrintOutRegisterInHex xmm0;
PrintOutRegisterInHex xmm1;
Sub rsp, 16;
Mov rax, rsp; # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
Mov rdi, 16;
Mov rsi, $s;
CopyMemory(V(source => rsi), V(target => rax), V size => rdi);
PrintOutMemory_InHexNL;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
xmm0: .... .... .... ...4 .... ...3 ...2 .1..
xmm1: .... .... .... ...4 .... ...3 ...2 .1..
__.1 .2__ .3__ ____ .4__ ____ ____ ____
END
Rq(@qwords)
Layout quad words in the data segment and return their label.
Parameter Description
1 @qwords Quad words to layout
Example:
my $s = Rb 0; Rb 1; Rw 2; Rd 3; Rq 4; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
my $t = Db 0; Db 1; Dw 2; Dd 3; Dq 4;
Vmovdqu8 xmm0, "[$s]";
Vmovdqu8 xmm1, "[$t]";
PrintOutRegisterInHex xmm0;
PrintOutRegisterInHex xmm1;
Sub rsp, 16;
Mov rax, rsp; # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
Mov rdi, 16;
Mov rsi, $s;
CopyMemory(V(source => rsi), V(target => rax), V size => rdi);
PrintOutMemory_InHexNL;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
xmm0: .... .... .... ...4 .... ...3 ...2 .1..
xmm1: .... .... .... ...4 .... ...3 ...2 .1..
__.1 .2__ .3__ ____ .4__ ____ ____ ____
END
Rs(@d)
Layout bytes in read only memory and return their label.
Parameter Description
1 @d Data to be laid out
Example:
Comment "Print a string from memory";
my $s = "Hello World";
Mov rax, Rs($s); # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Mov rdi, length $s;
PrintOutMemory;
Exit(0);
ok Assemble(avx512=>0) =~ m(Hello World);
my $q = Rs('abababab'); # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Mov r10, 0x10;
Mov r11, 0x11;
Mov r12, 0x12;
Mov r13, 0x13;
Mov r14, 0x14;
Mov r15, 0x15;
Mov r8, 0x08;
Mov r9, 0x09;
Mov rax, 1;
Mov rbx, 2;
Mov rcx, 3;
Mov rdi, 4;
Mov rdx, 5;
Mov rsi, 6;
PrintOutRegistersInHex;
my $r = Assemble(avx512=>0, eq=><<END, debug=>0);
rfl: .... .... .... .2.2
r10: .... .... .... ..10
r11: .... .... .... .2.6
r12: .... .... .... ..12
r13: .... .... .... ..13
r14: .... .... .... ..14
r15: .... .... .... ..15
r8: .... .... .... ...8
r9: .... .... .... ...9
rax: .... .... .... ...1
rbx: .... .... .... ...2
rcx: .... .... ..40 1922
rdi: .... .... .... ...4
rdx: .... .... .... ...5
rsi: .... .... .... ...6
END
Rutf8(@d)
Layout a utf8 encoded string as bytes in read only memory and return their label.
Parameter Description
1 @d Data to be laid out
Registers
Operations on registers
Size
Sizes of each register
RegisterSize($r)
Return the size of a register.
Parameter Description
1 $r Register
Example:
Mov rax, 1;
Mov rdi, 1;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
RestoreFirstSeven;
PrintOutRegisterInHex rax, rdi;
RestoreFirstFour;
PrintOutRegisterInHex rax, rdi;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
RestoreFirstSevenExceptRax;
PrintOutRegisterInHex rax, rdi;
RestoreFirstFourExceptRax;
PrintOutRegisterInHex rax, rdi;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
Bswap rax;
PrintOutRegisterInHex rax;
my $l = Label;
Jmp $l;
SetLabel $l;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .... .... .... ...2
rdi: .... .... .... ...2
rax: .... .... .... ...1
rdi: .... .... .... ...1
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .... .... .... ...3
rdi: .... .... .... ...2
rax: .... .... .... ...3
rdi: .... .... .... ...1
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .3.. .... .... ....
END
ok 8 == RegisterSize rax; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Push, Pop, Peek
Generic versions of push, pop, peek
PopR(@r)
Pop registers from the stack. Use the last stored set if none explicitly supplied. Pops are done in reverse order to match the original pushing order.
Parameter Description
1 @r Register
Example:
Mov rax, 0x11111111;
Mov rbx, 0x22222222;
PushR my @save = (rax, rbx);
Mov rax, 0x33333333;
PopR; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex rax;
PrintOutRegisterInHex rbx;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
rax: .... .... 1111 1111
rbx: .... .... 2222 2222
END
LoadZmm(17, 0x10..0x50);
PrintOutRegisterInHex zmm17;
Mov r14, 2; Mov r15, 3;
PrintOutRegisterInHex r14, r15;
PushR 14, 15, 16..31;
LoadZmm(17, 0x20..0x70);
PrintOutRegisterInHex zmm17;
Mov r14, 22; Mov r15, 33;
PopR; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex zmm17;
PrintOutRegisterInHex r14, r15;
ok Assemble eq => <<END, avx512=>1, trace=>0, mix=>0;
zmm17: 4F4E 4D4C 4B4A 4948 4746 4544 4342 4140 - 3F3E 3D3C 3B3A 3938 3736 3534 3332 3130 + 2F2E 2D2C 2B2A 2928 2726 2524 2322 2120 - 1F1E 1D1C 1B1A 1918 1716 1514 1312 1110
r14: .... .... .... ...2
r15: .... .... .... ...3
zmm17: 5F5E 5D5C 5B5A 5958 5756 5554 5352 5150 - 4F4E 4D4C 4B4A 4948 4746 4544 4342 4140 + 3F3E 3D3C 3B3A 3938 3736 3534 3332 3130 - 2F2E 2D2C 2B2A 2928 2726 2524 2322 2120
zmm17: 4F4E 4D4C 4B4A 4948 4746 4544 4342 4140 - 3F3E 3D3C 3B3A 3938 3736 3534 3332 3130 + 2F2E 2D2C 2B2A 2928 2726 2524 2322 2120 - 1F1E 1D1C 1B1A 1918 1716 1514 1312 1110
r14: .... .... .... ...2
r15: .... .... .... ...3
END
General
Actions specific to general purpose registers
registerNameFromNumber($r)
Register name from number where possible
Parameter Description
1 $r Register number
ChooseRegisters($number, @registers)
Choose the specified numbers of registers excluding those on the specified list.
Parameter Description
1 $number Number of registers needed
2 @registers Registers not to choose
InsertZeroIntoRegisterAtPoint($point, $in)
Insert a zero into the specified register at the point indicated by another general purpose or mask register moving the higher bits one position to the left.
Parameter Description
1 $point Register with a single 1 at the insertion point
2 $in Register to be inserted into.
Example:
Mov r15, 0x100; # Given a register with a single one in it indicating the desired position,
Mov r14, 0xFFDC; # Insert a zero into the register at that position shifting the bits above that position up left one to make space for the new zero.
Mov r13, 0xF03F;
PrintOutRegisterInHex r14, r15;
InsertZeroIntoRegisterAtPoint r15, r14; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex r14;
Or r14, r15; # Replace the inserted zero with a one
PrintOutRegisterInHex r14;
InsertOneIntoRegisterAtPoint r15, r13;
PrintOutRegisterInHex r13;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
r14: .... .... .... FFDC
r15: .... .... .... .1..
r14: .... .... ...1 FEDC
r14: .... .... ...1 FFDC
r13: .... .... ...1 E13F
END
InsertOneIntoRegisterAtPoint($point, $in)
Insert a one into the specified register at the point indicated by another register.
Parameter Description
1 $point Register with a single 1 at the insertion point
2 $in Register to be inserted into.
Example:
Mov r15, 0x100; # Given a register with a single one in it indicating the desired position,
Mov r14, 0xFFDC; # Insert a zero into the register at that position shifting the bits above that position up left one to make space for the new zero.
Mov r13, 0xF03F;
PrintOutRegisterInHex r14, r15;
InsertZeroIntoRegisterAtPoint r15, r14;
PrintOutRegisterInHex r14;
Or r14, r15; # Replace the inserted zero with a one
PrintOutRegisterInHex r14;
InsertOneIntoRegisterAtPoint r15, r13; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex r13;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
r14: .... .... .... FFDC
r15: .... .... .... .1..
r14: .... .... ...1 FEDC
r14: .... .... ...1 FFDC
r13: .... .... ...1 E13F
END
Save and Restore
Saving and restoring registers via the stack
SaveFirstFour(@keep)
Save the first 4 parameter registers making any parameter registers read only.
Parameter Description
1 @keep Registers to mark as read only
Example:
Mov rax, 1;
Mov rdi, 1;
SaveFirstFour; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
RestoreFirstSeven;
PrintOutRegisterInHex rax, rdi;
RestoreFirstFour;
PrintOutRegisterInHex rax, rdi;
SaveFirstFour; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
RestoreFirstSevenExceptRax;
PrintOutRegisterInHex rax, rdi;
RestoreFirstFourExceptRax;
PrintOutRegisterInHex rax, rdi;
SaveFirstFour; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
Bswap rax;
PrintOutRegisterInHex rax;
my $l = Label;
Jmp $l;
SetLabel $l;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .... .... .... ...2
rdi: .... .... .... ...2
rax: .... .... .... ...1
rdi: .... .... .... ...1
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .... .... .... ...3
rdi: .... .... .... ...2
rax: .... .... .... ...3
rdi: .... .... .... ...1
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .3.. .... .... ....
END
ok 8 == RegisterSize rax;
RestoreFirstFour()
Restore the first 4 parameter registers.
Example:
Mov rax, 1;
Mov rdi, 1;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
RestoreFirstSeven;
PrintOutRegisterInHex rax, rdi;
RestoreFirstFour; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex rax, rdi;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
RestoreFirstSevenExceptRax;
PrintOutRegisterInHex rax, rdi;
RestoreFirstFourExceptRax;
PrintOutRegisterInHex rax, rdi;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
Bswap rax;
PrintOutRegisterInHex rax;
my $l = Label;
Jmp $l;
SetLabel $l;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .... .... .... ...2
rdi: .... .... .... ...2
rax: .... .... .... ...1
rdi: .... .... .... ...1
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .... .... .... ...3
rdi: .... .... .... ...2
rax: .... .... .... ...3
rdi: .... .... .... ...1
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .3.. .... .... ....
END
ok 8 == RegisterSize rax;
RestoreFirstFourExceptRax()
Restore the first 4 parameter registers except rax so it can return its value.
Example:
Mov rax, 1;
Mov rdi, 1;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
RestoreFirstSeven;
PrintOutRegisterInHex rax, rdi;
RestoreFirstFour;
PrintOutRegisterInHex rax, rdi;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
RestoreFirstSevenExceptRax;
PrintOutRegisterInHex rax, rdi;
RestoreFirstFourExceptRax; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex rax, rdi;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
Bswap rax;
PrintOutRegisterInHex rax;
my $l = Label;
Jmp $l;
SetLabel $l;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .... .... .... ...2
rdi: .... .... .... ...2
rax: .... .... .... ...1
rdi: .... .... .... ...1
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .... .... .... ...3
rdi: .... .... .... ...2
rax: .... .... .... ...3
rdi: .... .... .... ...1
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .3.. .... .... ....
END
ok 8 == RegisterSize rax;
SaveFirstSeven()
Save the first 7 parameter registers.
Example:
Mov rax, 1;
Mov rdi, 1;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
RestoreFirstSeven;
PrintOutRegisterInHex rax, rdi;
RestoreFirstFour;
PrintOutRegisterInHex rax, rdi;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
RestoreFirstSevenExceptRax;
PrintOutRegisterInHex rax, rdi;
RestoreFirstFourExceptRax;
PrintOutRegisterInHex rax, rdi;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
Bswap rax;
PrintOutRegisterInHex rax;
my $l = Label;
Jmp $l;
SetLabel $l;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .... .... .... ...2
rdi: .... .... .... ...2
rax: .... .... .... ...1
rdi: .... .... .... ...1
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .... .... .... ...3
rdi: .... .... .... ...2
rax: .... .... .... ...3
rdi: .... .... .... ...1
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .3.. .... .... ....
END
ok 8 == RegisterSize rax;
RestoreFirstSeven()
Restore the first 7 parameter registers.
Example:
Mov rax, 1;
Mov rdi, 1;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
RestoreFirstSeven; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex rax, rdi;
RestoreFirstFour;
PrintOutRegisterInHex rax, rdi;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
RestoreFirstSevenExceptRax;
PrintOutRegisterInHex rax, rdi;
RestoreFirstFourExceptRax;
PrintOutRegisterInHex rax, rdi;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
Bswap rax;
PrintOutRegisterInHex rax;
my $l = Label;
Jmp $l;
SetLabel $l;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .... .... .... ...2
rdi: .... .... .... ...2
rax: .... .... .... ...1
rdi: .... .... .... ...1
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .... .... .... ...3
rdi: .... .... .... ...2
rax: .... .... .... ...3
rdi: .... .... .... ...1
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .3.. .... .... ....
END
ok 8 == RegisterSize rax;
RestoreFirstSevenExceptRax()
Restore the first 7 parameter registers except rax which is being used to return the result.
Example:
Mov rax, 1;
Mov rdi, 1;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
RestoreFirstSeven;
PrintOutRegisterInHex rax, rdi;
RestoreFirstFour;
PrintOutRegisterInHex rax, rdi;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
RestoreFirstSevenExceptRax; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex rax, rdi;
RestoreFirstFourExceptRax;
PrintOutRegisterInHex rax, rdi;
SaveFirstFour;
Mov rax, 2;
Mov rdi, 2;
SaveFirstSeven;
Mov rax, 3;
Mov rdi, 4;
PrintOutRegisterInHex rax, rdi;
Bswap rax;
PrintOutRegisterInHex rax;
my $l = Label;
Jmp $l;
SetLabel $l;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .... .... .... ...2
rdi: .... .... .... ...2
rax: .... .... .... ...1
rdi: .... .... .... ...1
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .... .... .... ...3
rdi: .... .... .... ...2
rax: .... .... .... ...3
rdi: .... .... .... ...1
rax: .... .... .... ...3
rdi: .... .... .... ...4
rax: .3.. .... .... ....
END
ok 8 == RegisterSize rax;
ClearRegisters(@registers)
Clear registers by setting them to zero.
Parameter Description
1 @registers Registers
Example:
Mov rax,1;
Kmovq k0, rax;
Kaddb k0, k0, k0;
Kaddb k0, k0, k0;
Kaddb k0, k0, k0;
Kmovq rax, k0;
PushR k0;
ClearRegisters k0; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Kmovq k1, k0;
PopR k0;
PrintOutRegisterInHex k0;
PrintOutRegisterInHex k1;
ok Assemble(avx512 => 1, eq => <<END)
k0: .... .... .... ...8
k1: .... .... .... ....
END
SetZF()
Set the zero flag.
Example:
SetZF; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutZF;
ClearZF;
PrintOutZF;
SetZF; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutZF;
SetZF; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutZF;
ClearZF;
PrintOutZF;
SetZF; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
IfZ Then {PrintOutStringNL "Zero"}, Else {PrintOutStringNL "NOT zero"};
ClearZF;
IfNz Then {PrintOutStringNL "NOT zero"}, Else {PrintOutStringNL "Zero"};
Mov r15, 5;
Shr r15, 1; IfC Then {PrintOutStringNL "Carry"} , Else {PrintOutStringNL "NO carry"};
Shr r15, 1; IfC Then {PrintOutStringNL "Carry"} , Else {PrintOutStringNL "NO carry"};
Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
ok Assemble(debug => 0, eq => <<END, avx512=>0);
ZF=1
ZF=0
ZF=1
ZF=1
ZF=0
Zero
NOT zero
Carry
NO carry
Carry
NO carry
END
ClearZF()
Clear the zero flag.
Example:
SetZF;
PrintOutZF;
ClearZF; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutZF;
SetZF;
PrintOutZF;
SetZF;
PrintOutZF;
ClearZF; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutZF;
SetZF;
IfZ Then {PrintOutStringNL "Zero"}, Else {PrintOutStringNL "NOT zero"};
ClearZF; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
IfNz Then {PrintOutStringNL "NOT zero"}, Else {PrintOutStringNL "Zero"};
Mov r15, 5;
Shr r15, 1; IfC Then {PrintOutStringNL "Carry"} , Else {PrintOutStringNL "NO carry"};
Shr r15, 1; IfC Then {PrintOutStringNL "Carry"} , Else {PrintOutStringNL "NO carry"};
Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
ok Assemble(debug => 0, eq => <<END, avx512=>0);
ZF=1
ZF=0
ZF=1
ZF=1
ZF=0
Zero
NOT zero
Carry
NO carry
Carry
NO carry
END
x, y, zmm
Actions specific to mm registers
xmm(@r)
Add xmm to the front of a list of register expressions.
Parameter Description
1 @r Register numbers
ymm(@r)
Add ymm to the front of a list of register expressions.
Parameter Description
1 @r Register numbers
zmm(@r)
Add zmm to the front of a list of register expressions.
Parameter Description
1 @r Register numbers
Example:
LoadZmm 0, 0..63;
PrintOutRegisterInHex zmm 0; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
ok Assemble(debug => 0, eq => <<END, avx512=>1);
zmm0: 3F3E 3D3C 3B3A 3938 3736 3534 3332 3130 - 2F2E 2D2C 2B2A 2928 2726 2524 2322 2120 + 1F1E 1D1C 1B1A 1918 1716 1514 1312 1110 - .F.E .D.C .B.A .9.8 .7.6 .5.4 .3.2 .1..
END
zmmM($z, $m)
Add zmm to the front of a register number and a mask after it
Parameter Description
1 $z Zmm number
2 $m Mask register
zmmMZ($z, $m)
Add zmm to the front of a register number and mask and zero after it
Parameter Description
1 $z Zmm number
2 $m Mask register number
LoadZmm($zmm, @bytes)
Load a numbered zmm with the specified bytes.
Parameter Description
1 $zmm Numbered zmm
2 @bytes Bytes
Example:
LoadZmm 0, 0..63; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex zmm 0;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
zmm0: 3F3E 3D3C 3B3A 3938 3736 3534 3332 3130 - 2F2E 2D2C 2B2A 2928 2726 2524 2322 2120 + 1F1E 1D1C 1B1A 1918 1716 1514 1312 1110 - .F.E .D.C .B.A .9.8 .7.6 .5.4 .3.2 .1..
END
checkZmmRegister($z)
Check that a register is a zmm register
Parameter Description
1 $z Parameters
bRegFromZmm($register, $zmm, $offset)
Load the specified register from the byte at the specified offset located in the numbered zmm.
Parameter Description
1 $register Register to load
2 $zmm Numbered zmm register to load from
3 $offset Constant offset in bytes
bRegIntoZmm($register, $zmm, $offset)
Put the byte content of the specified register into the byte in the numbered zmm at the specified offset in the zmm.
Parameter Description
1 $register Register to load
2 $zmm Numbered zmm register to load from
3 $offset Constant offset in bytes
wRegFromZmm($register, $zmm, $offset)
Load the specified register from the word at the specified offset located in the numbered zmm.
Parameter Description
1 $register Register to load
2 $zmm Numbered zmm register to load from
3 $offset Constant offset in bytes
wRegIntoZmm($register, $zmm, $offset)
Put the specified register into the word in the numbered zmm at the specified offset in the zmm.
Parameter Description
1 $register Register to load
2 $zmm Numbered zmm register to load from
3 $offset Constant offset in bytes
LoadRegFromMm($mm, $offset, $reg)
Load the specified register from the numbered zmm at the quad offset specified as a constant number.
Parameter Description
1 $mm Mm register
2 $offset Offset in quads
3 $reg General purpose register to load
SaveRegIntoMm($mm, $offset, $reg)
Save the specified register into the numbered zmm at the quad offset specified as a constant number.
Parameter Description
1 $mm Mm register
2 $offset Offset in quads
3 $reg General purpose register to load
extractRegisterNumberFromMM($mm)
Extract the register number from an *mm register
Parameter Description
1 $mm Mmm register
getBwdqFromMm($size, $mm, $offset, %options)
Get the numbered byte|word|double word|quad word from the numbered zmm register and return it in a variable.
Parameter Description
1 $size Size of get
2 $mm Mm register
3 $offset Offset in bytes either as a constant or as a variable
4 %options Options
bFromX($xmm, $offset)
Get the byte from the numbered xmm register and return it in a variable.
Parameter Description
1 $xmm Numbered xmm
2 $offset Offset in bytes
wFromX($xmm, $offset)
Get the word from the numbered xmm register and return it in a variable.
Parameter Description
1 $xmm Numbered xmm
2 $offset Offset in bytes
dFromX($xmm, $offset)
Get the double word from the numbered xmm register and return it in a variable.
Parameter Description
1 $xmm Numbered xmm
2 $offset Offset in bytes
qFromX($xmm, $offset)
Get the quad word from the numbered xmm register and return it in a variable.
Parameter Description
1 $xmm Numbered xmm
2 $offset Offset in bytes
bFromZ($zmm, $offset, %options)
Get the byte from the numbered zmm register and return it in a variable.
Parameter Description
1 $zmm Numbered zmm
2 $offset Offset in bytes
3 %options Options
wFromZ($zmm, $offset)
Get the word from the numbered zmm register and return it in a variable.
Parameter Description
1 $zmm Numbered zmm
2 $offset Offset in bytes
dFromZ($zmm, $offset, %options)
Get the double word from the numbered zmm register and return it in a variable.
Parameter Description
1 $zmm Numbered zmm
2 $offset Offset in bytes
3 %options Options
qFromZ($zmm, $offset)
Get the quad word from the numbered zmm register and return it in a variable.
Parameter Description
1 $zmm Numbered zmm
2 $offset Offset in bytes
Mask
Operations on mask registers
CheckMaskRegister($reg)
Check that a register is in fact a numbered mask register
Parameter Description
1 $reg Register to check
CheckIfMaskRegisterNumber($mask)
Check that a register is in fact a mask register.
Parameter Description
1 $mask Mask register to check
CheckMaskRegisterNumber($mask)
Check that a register is in fact a mask register and confess if it is not.
Parameter Description
1 $mask Mask register to check
SetMaskRegister($mask, $start, $length)
Set the mask register to ones starting at the specified position for the specified length and zeroes elsewhere.
Parameter Description
1 $mask Number of mask register to set
2 $start Register containing start position or 0 for position 0
3 $length Register containing end position
Example:
Mov rax, 8;
Mov rsi, -1;
Inc rsi; SetMaskRegister(0, rax, rsi); PrintOutRegisterInHex k0; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Inc rsi; SetMaskRegister(1, rax, rsi); PrintOutRegisterInHex k1; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Inc rsi; SetMaskRegister(2, rax, rsi); PrintOutRegisterInHex k2; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Inc rsi; SetMaskRegister(3, rax, rsi); PrintOutRegisterInHex k3; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Inc rsi; SetMaskRegister(4, rax, rsi); PrintOutRegisterInHex k4; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Inc rsi; SetMaskRegister(5, rax, rsi); PrintOutRegisterInHex k5; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Inc rsi; SetMaskRegister(6, rax, rsi); PrintOutRegisterInHex k6; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Inc rsi; SetMaskRegister(7, rax, rsi); PrintOutRegisterInHex k7; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
ok Assemble(debug => 0, eq => <<END, avx512=>1);
k0: .... .... .... ....
k1: .... .... .... .1..
k2: .... .... .... .3..
k3: .... .... .... .7..
k4: .... .... .... .F..
k5: .... .... .... 1F..
k6: .... .... .... 3F..
k7: .... .... .... 7F..
END
LoadConstantIntoMaskRegister($mask, $value)
Set a mask register equal to a constant.
Parameter Description
1 $mask Number of mask register to load
2 $value Constant to load
createBitNumberFromAlternatingPattern($prefix, @values)
Create a number from a bit pattern.
Parameter Description
1 $prefix Prefix bits
2 @values +n 1 bits -n 0 bits
LoadBitsIntoMaskRegister($mask, $prefix, @values)
Load a bit string specification into a mask register in two clocks.
Parameter Description
1 $mask Number of mask register to load
2 $prefix Prefix bits
3 @values +n 1 bits -n 0 bits
Example:
for (0..7)
{ClearRegisters "k$_";
K($_,$_)->setMaskBit("k$_");
PrintOutRegisterInHex "k$_";
}
ClearRegisters k7;
LoadBitsIntoMaskRegister(7, '1010', -4, +4, -2, +2, -1, +1, -1, +1); # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex "k7";
ok Assemble(debug => 0, eq => <<END, avx512=>1);
k0: .... .... .... ...1
k1: .... .... .... ...2
k2: .... .... .... ...4
k3: .... .... .... ...8
k4: .... .... .... ..10
k5: .... .... .... ..20
k6: .... .... .... ..40
k7: .... .... .... ..80
k7: .... .... ...A .F35
END
Comparison codes
The codes used to specify what sort of comparison to perform
Structured Programming
Structured programming constructs
If
If statements
If($jump, $then, $else)
If statement.
Parameter Description
1 $jump Jump op code of variable
2 $then Then - required
3 $else Else - optional
Example:
my $c = K(one => 1);
If ($c == 0, # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Then
{PrintOutStringNL "1 == 0";
},
Else
{PrintOutStringNL "1 != 0";
});
ok Assemble(debug => 0, eq => <<END, avx512=>0);
1 != 0
END
my $a = K(key => 1);
If $a > 0, # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Then {Mov rax, 1},
Else {Mov rax, 2};
PrintOutRegisterInHex rax;
ok Assemble eq=><<END, avx512=>1, mix=> 0, trace=>0;
rax: .... .... .... ...1
END
Then($block)
Then block for an If statement.
Parameter Description
1 $block Then block
Example:
my $a = K(key => 1);
If $a > 0,
Then {Mov rax, 1}, # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Else {Mov rax, 2};
PrintOutRegisterInHex rax;
ok Assemble eq=><<END, avx512=>1, mix=> 0, trace=>0;
rax: .... .... .... ...1
END
my $a = V(a => 3); $a->outNL;
my $b = K(b => 2); $b->outNL;
my $c = $a + $b; $c->outNL;
my $d = $c - $a; $d->outNL;
my $g = $a * $b; $g->outNL;
my $h = $g / $b; $h->outNL;
my $i = $a % $b; $i->outNL;
If ($a == 3,
Then # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
{PrintOutStringNL "a == 3"
},
Else
{PrintOutStringNL "a != 3"
});
++$a; $a->outNL;
--$a; $a->outNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
a: .... .... .... ...3
b: .... .... .... ...2
(a add b): .... .... .... ...5
((a add b) sub a): .... .... .... ...2
(a times b): .... .... .... ...6
((a times b) / b): .... .... .... ...3
(a % b): .... .... .... ...1
a == 3
a: .... .... .... ...4
a: .... .... .... ...3
END
Else($block)
Else block for an If statement.
Parameter Description
1 $block Else block
Example:
my $a = K(key => 1);
If $a > 0,
Then {Mov rax, 1},
Else {Mov rax, 2}; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex rax;
ok Assemble eq=><<END, avx512=>1, mix=> 0, trace=>0;
rax: .... .... .... ...1
END
my $a = V(a => 3); $a->outNL;
my $b = K(b => 2); $b->outNL;
my $c = $a + $b; $c->outNL;
my $d = $c - $a; $d->outNL;
my $g = $a * $b; $g->outNL;
my $h = $g / $b; $h->outNL;
my $i = $a % $b; $i->outNL;
If ($a == 3,
Then
{PrintOutStringNL "a == 3"
},
Else # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
{PrintOutStringNL "a != 3"
});
++$a; $a->outNL;
--$a; $a->outNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
a: .... .... .... ...3
b: .... .... .... ...2
(a add b): .... .... .... ...5
((a add b) sub a): .... .... .... ...2
(a times b): .... .... .... ...6
((a times b) / b): .... .... .... ...3
(a % b): .... .... .... ...1
a == 3
a: .... .... .... ...4
a: .... .... .... ...3
END
opposingJump($j)
Return the opposite of a jump
Parameter Description
1 $j Jump
ifOr($conditions, $Then, $Else)
Execute then or else block based on a multiplicity of OR conditions executed until one succeeds.
Parameter Description
1 $conditions Array of conditions
2 $Then Then sub
3 $Else Else sub
ifAnd($conditions, $Then, $Else)
Execute then or else block based on a multiplicity of AND conditions executed until one fails.
Parameter Description
1 $conditions Array of conditions
2 $Then Then sub
3 $Else Else sub
Ef($condition, $then, $else)
Else if block for an If statement.
Parameter Description
1 $condition Condition
2 $then Then block
3 $else Else block
IfEq($then, $else)
If equal execute the then block else the else block.
Parameter Description
1 $then Then - required
2 $else Else - optional
Example:
my $cmp = sub
{my ($a, $b) = @_;
for my $op(qw(eq ne lt le gt ge))
{Mov rax, $a;
Cmp rax, $b;
my $Op = ucfirst $op;
eval qq(If$Op Then {PrintOutStringNL("$a $op $b")}, Else {PrintOutStringNL("$a NOT $op $b")});
$@ and confess $@;
}
};
&$cmp(1,1);
&$cmp(1,2);
&$cmp(3,2);
Assemble(debug => 0, eq => <<END, avx512=>0);
1 eq 1
1 NOT ne 1
1 NOT lt 1
1 le 1
1 NOT gt 1
1 ge 1
1 NOT eq 2
1 ne 2
1 lt 2
1 le 2
1 NOT gt 2
1 NOT ge 2
3 NOT eq 2
3 ne 2
3 NOT lt 2
3 NOT le 2
3 gt 2
3 ge 2
END
IfNe($then, $else)
If not equal execute the then block else the else block.
Parameter Description
1 $then Then - required
2 $else Else - optional
Example:
my $cmp = sub
{my ($a, $b) = @_;
for my $op(qw(eq ne lt le gt ge))
{Mov rax, $a;
Cmp rax, $b;
my $Op = ucfirst $op;
eval qq(If$Op Then {PrintOutStringNL("$a $op $b")}, Else {PrintOutStringNL("$a NOT $op $b")});
$@ and confess $@;
}
};
&$cmp(1,1);
&$cmp(1,2);
&$cmp(3,2);
Assemble(debug => 0, eq => <<END, avx512=>0);
1 eq 1
1 NOT ne 1
1 NOT lt 1
1 le 1
1 NOT gt 1
1 ge 1
1 NOT eq 2
1 ne 2
1 lt 2
1 le 2
1 NOT gt 2
1 NOT ge 2
3 NOT eq 2
3 ne 2
3 NOT lt 2
3 NOT le 2
3 gt 2
3 ge 2
END
IfNz($then, $else)
If the zero flag is not set then execute the then block else the else block.
Parameter Description
1 $then Then - required
2 $else Else - optional
Example:
Mov rax, 0;
Test rax,rax;
IfNz # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Then
{PrintOutRegisterInHex rax;
},
Else
{PrintOutRegisterInHex rbx;
};
Mov rax, 1;
Test rax,rax;
IfNz # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Then
{PrintOutRegisterInHex rcx;
},
Else
{PrintOutRegisterInHex rdx;
};
ok Assemble(avx512=>0) =~ m(rbx.*rcx)s;
IfZ($then, $else)
If the zero flag is set then execute the then block else the else block.
Parameter Description
1 $then Then - required
2 $else Else - optional
Example:
SetZF;
PrintOutZF;
ClearZF;
PrintOutZF;
SetZF;
PrintOutZF;
SetZF;
PrintOutZF;
ClearZF;
PrintOutZF;
SetZF;
IfZ Then {PrintOutStringNL "Zero"}, Else {PrintOutStringNL "NOT zero"}; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
ClearZF;
IfNz Then {PrintOutStringNL "NOT zero"}, Else {PrintOutStringNL "Zero"};
Mov r15, 5;
Shr r15, 1; IfC Then {PrintOutStringNL "Carry"} , Else {PrintOutStringNL "NO carry"};
Shr r15, 1; IfC Then {PrintOutStringNL "Carry"} , Else {PrintOutStringNL "NO carry"};
Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
ok Assemble(debug => 0, eq => <<END, avx512=>0);
ZF=1
ZF=0
ZF=1
ZF=1
ZF=0
Zero
NOT zero
Carry
NO carry
Carry
NO carry
END
IfC($then, $else)
If the carry flag is set then execute the then block else the else block.
Parameter Description
1 $then Then - required
2 $else Else - optional
Example:
SetZF;
PrintOutZF;
ClearZF;
PrintOutZF;
SetZF;
PrintOutZF;
SetZF;
PrintOutZF;
ClearZF;
PrintOutZF;
SetZF;
IfZ Then {PrintOutStringNL "Zero"}, Else {PrintOutStringNL "NOT zero"};
ClearZF;
IfNz Then {PrintOutStringNL "NOT zero"}, Else {PrintOutStringNL "Zero"};
Mov r15, 5;
Shr r15, 1; IfC Then {PrintOutStringNL "Carry"} , Else {PrintOutStringNL "NO carry"}; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Shr r15, 1; IfC Then {PrintOutStringNL "Carry"} , Else {PrintOutStringNL "NO carry"}; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
ok Assemble(debug => 0, eq => <<END, avx512=>0);
ZF=1
ZF=0
ZF=1
ZF=1
ZF=0
Zero
NOT zero
Carry
NO carry
Carry
NO carry
END
IfNc($then, $else)
If the carry flag is not set then execute the then block else the else block.
Parameter Description
1 $then Then - required
2 $else Else - optional
Example:
SetZF;
PrintOutZF;
ClearZF;
PrintOutZF;
SetZF;
PrintOutZF;
SetZF;
PrintOutZF;
ClearZF;
PrintOutZF;
SetZF;
IfZ Then {PrintOutStringNL "Zero"}, Else {PrintOutStringNL "NOT zero"};
ClearZF;
IfNz Then {PrintOutStringNL "NOT zero"}, Else {PrintOutStringNL "Zero"};
Mov r15, 5;
Shr r15, 1; IfC Then {PrintOutStringNL "Carry"} , Else {PrintOutStringNL "NO carry"};
Shr r15, 1; IfC Then {PrintOutStringNL "Carry"} , Else {PrintOutStringNL "NO carry"};
Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"}; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"}; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
ok Assemble(debug => 0, eq => <<END, avx512=>0);
ZF=1
ZF=0
ZF=1
ZF=1
ZF=0
Zero
NOT zero
Carry
NO carry
Carry
NO carry
END
IfLt($then, $else)
If less than execute the then block else the else block.
Parameter Description
1 $then Then - required
2 $else Else - optional
Example:
my $cmp = sub
{my ($a, $b) = @_;
for my $op(qw(eq ne lt le gt ge))
{Mov rax, $a;
Cmp rax, $b;
my $Op = ucfirst $op;
eval qq(If$Op Then {PrintOutStringNL("$a $op $b")}, Else {PrintOutStringNL("$a NOT $op $b")});
$@ and confess $@;
}
};
&$cmp(1,1);
&$cmp(1,2);
&$cmp(3,2);
Assemble(debug => 0, eq => <<END, avx512=>0);
1 eq 1
1 NOT ne 1
1 NOT lt 1
1 le 1
1 NOT gt 1
1 ge 1
1 NOT eq 2
1 ne 2
1 lt 2
1 le 2
1 NOT gt 2
1 NOT ge 2
3 NOT eq 2
3 ne 2
3 NOT lt 2
3 NOT le 2
3 gt 2
3 ge 2
END
IfLe($then, $else)
If less than or equal execute the then block else the else block.
Parameter Description
1 $then Then - required
2 $else Else - optional
Example:
my $cmp = sub
{my ($a, $b) = @_;
for my $op(qw(eq ne lt le gt ge))
{Mov rax, $a;
Cmp rax, $b;
my $Op = ucfirst $op;
eval qq(If$Op Then {PrintOutStringNL("$a $op $b")}, Else {PrintOutStringNL("$a NOT $op $b")});
$@ and confess $@;
}
};
&$cmp(1,1);
&$cmp(1,2);
&$cmp(3,2);
Assemble(debug => 0, eq => <<END, avx512=>0);
1 eq 1
1 NOT ne 1
1 NOT lt 1
1 le 1
1 NOT gt 1
1 ge 1
1 NOT eq 2
1 ne 2
1 lt 2
1 le 2
1 NOT gt 2
1 NOT ge 2
3 NOT eq 2
3 ne 2
3 NOT lt 2
3 NOT le 2
3 gt 2
3 ge 2
END
IfGt($then, $else)
If greater than execute the then block else the else block.
Parameter Description
1 $then Then - required
2 $else Else - optional
Example:
my $cmp = sub
{my ($a, $b) = @_;
for my $op(qw(eq ne lt le gt ge))
{Mov rax, $a;
Cmp rax, $b;
my $Op = ucfirst $op;
eval qq(If$Op Then {PrintOutStringNL("$a $op $b")}, Else {PrintOutStringNL("$a NOT $op $b")});
$@ and confess $@;
}
};
&$cmp(1,1);
&$cmp(1,2);
&$cmp(3,2);
Assemble(debug => 0, eq => <<END, avx512=>0);
1 eq 1
1 NOT ne 1
1 NOT lt 1
1 le 1
1 NOT gt 1
1 ge 1
1 NOT eq 2
1 ne 2
1 lt 2
1 le 2
1 NOT gt 2
1 NOT ge 2
3 NOT eq 2
3 ne 2
3 NOT lt 2
3 NOT le 2
3 gt 2
3 ge 2
END
IfGe($then, $else)
If greater than or equal execute the then block else the else block.
Parameter Description
1 $then Then - required
2 $else Else - optional
Example:
my $cmp = sub
{my ($a, $b) = @_;
for my $op(qw(eq ne lt le gt ge))
{Mov rax, $a;
Cmp rax, $b;
my $Op = ucfirst $op;
eval qq(If$Op Then {PrintOutStringNL("$a $op $b")}, Else {PrintOutStringNL("$a NOT $op $b")});
$@ and confess $@;
}
};
&$cmp(1,1);
&$cmp(1,2);
&$cmp(3,2);
Assemble(debug => 0, eq => <<END, avx512=>0);
1 eq 1
1 NOT ne 1
1 NOT lt 1
1 le 1
1 NOT gt 1
1 ge 1
1 NOT eq 2
1 ne 2
1 lt 2
1 le 2
1 NOT gt 2
1 NOT ge 2
3 NOT eq 2
3 ne 2
3 NOT lt 2
3 NOT le 2
3 gt 2
3 ge 2
END
IfS($then, $else)
If signed greater than or equal execute the then block else the else block.
Parameter Description
1 $then Then - required
2 $else Else - optional
IfNs($then, $else)
If signed less than execute the then block else the else block.
Parameter Description
1 $then Then - required
2 $else Else - optional
Boolean Blocks
Perform blocks depending on boolean conditions
Pass($block)
Pass block for an OrBlock.
Parameter Description
1 $block Block
Example:
Mov rax, 1;
OrBlock
{my ($pass, $end, $start) = @_;
Cmp rax, 1;
Je $pass;
Cmp rax, 2;
Je $pass;
PrintOutStringNL "Fail";
}
Pass # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
{my ($end, $pass, $start) = @_;
PrintOutStringNL "Pass"; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
};
ok Assemble(debug => 0, eq => <<END, avx512=>0);
Pass # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
END
Fail($block)
Fail block for an AndBlock.
Parameter Description
1 $block Block
Example:
Mov rax, 1; Mov rdx, 2;
AndBlock
{my ($fail, $end, $start) = @_;
Cmp rax, 1;
Jne $fail;
Cmp rdx, 2;
Jne $fail;
PrintOutStringNL "Pass";
}
Fail # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
{my ($end, $fail, $start) = @_;
PrintOutStringNL "Fail"; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
};
ok Assemble(debug => 0, eq => <<END, avx512=>0);
Pass
END
Block($code)
Execute a block of code with labels supplied for the start and end of this code
Parameter Description
1 $code Block of code
AndBlock($test, $fail)
Short circuit and: execute a block of code to test conditions which, if all of them pass, allows the first block to continue successfully else if one of the conditions fails we execute the optional fail block.
Parameter Description
1 $test Block
2 $fail Optional failure block
Example:
Mov rax, 1; Mov rdx, 2;
AndBlock # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
{my ($fail, $end, $start) = @_;
Cmp rax, 1;
Jne $fail;
Cmp rdx, 2;
Jne $fail;
PrintOutStringNL "Pass";
}
Fail
{my ($end, $fail, $start) = @_;
PrintOutStringNL "Fail";
};
ok Assemble(debug => 0, eq => <<END, avx512=>0);
Pass
END
OrBlock($test, $pass)
Short circuit or: execute a block of code to test conditions which, if one of them is met, leads on to the execution of the pass block, if all of the tests fail we continue withe the test block.
Parameter Description
1 $test Tests
2 $pass Optional block to execute on success
Example:
Mov rax, 1;
OrBlock # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
{my ($pass, $end, $start) = @_;
Cmp rax, 1;
Je $pass;
Cmp rax, 2;
Je $pass;
PrintOutStringNL "Fail";
}
Pass
{my ($end, $pass, $start) = @_;
PrintOutStringNL "Pass";
};
ok Assemble(debug => 0, eq => <<END, avx512=>0);
Pass
END
Iteration
Iterate with for loops
For($block, $register, $limit, $increment)
For - iterate the block as long as register is less than limit incrementing by increment each time. Nota Bene: The register is not explicitly set to zero as you might want to start at some other number.
Parameter Description
1 $block Block
2 $register Register
3 $limit Limit on loop
4 $increment Increment on each iteration
Example:
For # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
{my ($start, $end, $next) = @_;
Cmp rax, 3;
Jge $end;
PrintOutRegisterInHex rax;
} rax, 16, 1;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
rax: .... .... .... ....
rax: .... .... .... ...1
rax: .... .... .... ...2
END
ForIn($full, $last, $register, $limitRegister, $increment)
For - iterate the full block as long as register plus increment is less than than limit incrementing by increment each time then increment the last block for the last non full block.
Parameter Description
1 $full Block for full block
2 $last Block for last block
3 $register Register
4 $limitRegister Register containing upper limit of loop
5 $increment Increment on each iteration
uptoNTimes($code, $register, $limit)
Execute a block of code up to a constant number of times controlled by the named register
Parameter Description
1 $code Block of code
2 $register Register controlling loop
3 $limit Constant limit
ForEver($block)
Iterate for ever.
Parameter Description
1 $block Block to iterate
Trace back
Generate a subroutine calll trace back
PrintTraceBack($channel)
Trace the call stack.
Parameter Description
1 $channel Channel to write on
PrintErrTraceBack($message)
Print sub routine track back on stderr and then exit with a message.
Parameter Description
1 $message Reason why we are printing the trace back and then stopping
PrintOutTraceBack($message)
Print sub routine track back on stdout and then exit with a message.
Parameter Description
1 $message Reason why we are printing the trace back and then stopping
Example:
my $d = V depth => 3; # Create a variable on the stack
my $s = Subroutine
{my ($p, $s, $sub) = @_; # Parameters, structures, subroutine descriptor
$$p{depth}->outNL;
my $d = $$p{depth}->copy($$p{depth} - 1); # Modify the variable referenced by the parameter
If $d > 0,
Then
{$sub->call(parameters => {depth => $d}); # Recurse
};
} parameters =>[qw(depth)], name => 'ref';
$s->call(parameters=>{depth => $d});
$d->outNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
depth: .... .... .... ...3
depth: .... .... .... ...2
depth: .... .... .... ...1
depth: .... .... .... ....
END
OnSegv()
Request a trace back followed by exit on a segv signal.
Example:
OnSegv(); # Request a trace back followed by exit on a segv signal. # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
my $t = Subroutine # Subroutine that will cause an error to occur to force a trace back to be printed
{Mov r15, 0;
Mov r15, "[r15]"; # Try to read an unmapped memory location
} [qw(in)], name => 'sub that causes a segv'; # The name that will appear in the trace back
$t->call(K(in, 42));
ok Assemble(debug => 0, keep2 => 'signal', avx512=>0, eq => <<END, avx512=>0);# Cannot use the emulator because it does not understand signals
Subroutine trace back, depth: 1
0000 0000 0000 002A sub that causes a segv
END
copyStructureMinusVariables($s)
Copy a non recursive structure ignoring variables
Parameter Description
1 $s Structure to copy
Subroutine($block, %options)
Create a subroutine that can be called in assembler code.
Parameter Description
1 $block Block of code as a sub
2 %options Options
Example:
my $g = V g => 3;
my $s = Subroutine # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
{my ($p, $s, $sub) = @_;
my $g = $$p{g};
$g->copy($g - 1);
$g->outNL;
If $g > 0,
Then
{$sub->call(parameters=>{g => $g});
};
} parameters=>[qw(g)], name => 'ref';
$s->call(parameters=>{g => $g});
ok Assemble(debug => 0, eq => <<END, avx512=>1);
g: .... .... .... ...2
g: .... .... .... ...1
g: .... .... .... ....
END
my $s = Subroutine # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
my $t = Subroutine # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Nasm::X86::Subroutine::mapStructureVariables($sub, $S, @P)
Find the paths to variables in the copies of the structures passed as parameters and replace those variables with references so that in the subroutine we can refer to these variables regardless of where they are actually defined
Parameter Description
1 $sub Sub definition
2 $S Copies of source structures
3 @P Path through copies of source structures to a variable that becomes a reference
Nasm::X86::Subroutine::uploadStructureVariablesToNewStackFrame($sub, $sv, $S, @P)
Create references to variables in parameter structures from variables in the stack frame of the subroutine.
Parameter Description
1 $sub Sub definition
2 $sv Structure variables
3 $S Source tree of input structures
4 @P Path through source structures tree
Nasm::X86::Subroutine::call($sub, %options)
Call a sub optionally passing it parameters.
Parameter Description
1 $sub Subroutine descriptor
2 %options Options
Example:
my $h = genHash("AAAA",
a => V(a => 1),
b => V(b => 2),
c => V(c => 3),
d => V(d => 4),
e => V(e => 5),
f => V(f => 6),
g => V(g => 7),
h => V(h => 8),
i => V(i => 9),
j => V(j => 10),
k => V(k => 11),
l => V(l => 12));
my $i = genHash("AAAA",
a => V(a => 0x011),
b => V(b => 0x022),
c => V(c => 0x033),
d => V(d => 0x044),
e => V(e => 0x055),
f => V(f => 0x066),
g => V(g => 0x077),
h => V(h => 0x088),
i => V(i => 0x099),
j => V(j => 0x111),
k => V(k => 0x222),
l => V(l => 0x333));
my $s = Subroutine
{my ($p, $s, $sub) = @_;
my $h = $$s{h};
my $a = $$p{a};
$$h{a}->outNL;
$$h{b}->outNL;
$$h{c}->outNL;
$$h{d}->outNL;
$$h{e}->outNL;
$$h{f}->outNL;
$$h{g}->outNL;
$$h{h}->outNL;
$$h{i}->outNL;
$$h{j}->outNL;
$$h{k}->outNL;
$$h{l}->outNL;
$$p{b}->outNL;
} name => "s", structures => {h => $h}, parameters=>[qw(a b)];
$s->call(structures => {h => $i}, parameters=>{a=>V(key => 1), b=>V(key => 0x111)});
$s->call(structures => {h => $h}, parameters=>{a=>V(key => 2), b=>V(key => 0x222)});
Assemble eq=><<END, avx512=>1, trace=>0, mix=>1, clocks=>9151, label => 'aa';
a: .... .... .... ..11
b: .... .... .... ..22
c: .... .... .... ..33
d: .... .... .... ..44
e: .... .... .... ..55
f: .... .... .... ..66
g: .... .... .... ..77
h: .... .... .... ..88
i: .... .... .... ..99
j: .... .... .... .111
k: .... .... .... .222
l: .... .... .... .333
b: .... .... .... .111
a: .... .... .... ...1
b: .... .... .... ...2
c: .... .... .... ...3
d: .... .... .... ...4
e: .... .... .... ...5
f: .... .... .... ...6
g: .... .... .... ...7
h: .... .... .... ...8
i: .... .... .... ...9
j: .... .... .... ...A
k: .... .... .... ...B
l: .... .... .... ...C
b: .... .... .... .222
END
my $h = genHash("AAAA",
a => V(a => 1),
b => V(b => 2),
c => V(c => 3),
d => V(d => 4),
e => V(e => 5),
f => V(f => 6),
g => V(g => 7),
h => V(h => 8),
i => V(i => 9),
j => V(j => 10),
k => V(k => 11),
l => V(l => 12));
my $s = Subroutine
{my ($p, $s, $sub) = @_;
my $h = $$s{h};
my $a = $$p{a};
$$h{a}->outNL;
$$h{b}->outNL;
$$h{c}->outNL;
$$h{d}->outNL;
$$h{e}->outNL;
$$h{f}->outNL;
$$h{g}->outNL;
$$h{h}->outNL;
$$h{i}->outNL;
$$h{j}->outNL;
$$h{k}->outNL;
$$h{l}->outNL;
If $a > 0,
Then
{$sub->call(structures => {h => $h}, parameters=>{a=>V(key => 0), b=>V(key => 0x111)});
};
} name => "s", structures => {h => $h}, parameters=>[qw(a b)];
$s->call(structures => {h => $h}, parameters=>{a=>V(key => 2), b=>V(key => 0x222)});
Assemble eq=><<END, avx512=>1, trace=>0, mix=>1, clocks=>17609, label => 'aaa';
a: .... .... .... ...1
b: .... .... .... ...2
c: .... .... .... ...3
d: .... .... .... ...4
e: .... .... .... ...5
f: .... .... .... ...6
g: .... .... .... ...7
h: .... .... .... ...8
i: .... .... .... ...9
j: .... .... .... ...A
k: .... .... .... ...B
l: .... .... .... ...C
a: .... .... .... ...1
b: .... .... .... ...2
c: .... .... .... ...3
d: .... .... .... ...4
e: .... .... .... ...5
f: .... .... .... ...6
g: .... .... .... ...7
h: .... .... .... ...8
i: .... .... .... ...9
j: .... .... .... ...A
k: .... .... .... ...B
l: .... .... .... ...C
END
Nasm::X86::Subroutine::inline($sub, %options)
Call a sub by in-lining it, optionally passing it parameters.
Parameter Description
1 $sub Subroutine descriptor
2 %options Options
Example:
my $s = Subroutine # Load and print rax
{my ($p, $s, $sub) = @_;
$$p{ppp}->outNL;
} name => "s", parameters=>[qw(ppp)];
$s->call (parameters => {ppp => V ppp => 0x99}); # Call 378
$s->inline(parameters => {ppp => V ppp => 0xaa}); # Inline 364
Assemble eq=><<END, avx512=>1, trace=>0, mix=>0;
ppp: .... .... .... ..99
ppp: .... .... .... ..AA
END
Comments
Inserts comments into the generated assember code.
CommentWithTraceBack(@comment)
Insert a comment into the assembly code with a traceback showing how it was generated.
Parameter Description
1 @comment Text of comment
Comment(@comment)
Insert a comment into the assembly code.
Parameter Description
1 @comment Text of comment
Example:
Comment "Print a string from memory"; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
my $s = "Hello World";
Mov rax, Rs($s);
Mov rdi, length $s;
PrintOutMemory;
Exit(0);
ok Assemble(avx512=>0) =~ m(Hello World);
DComment(@comment)
Insert a comment into the data segment.
Parameter Description
1 @comment Text of comment
RComment(@comment)
Insert a comment into the read only data segment.
Parameter Description
1 @comment Text of comment
Print the values of registers. The print commands do not overwrite the free registes as doing so would make debugging difficult.
Strings
Print constant and variable strings
PrintNL($channel)
Print a new line to stdout or stderr.
Parameter Description
1 $channel Channel to write on
PrintErrNL()
Print a new line to stderr.
PrintOutNL()
Print a new line to stderr.
Example:
my $q = Rs('abababab');
Mov(rax, "[$q]");
PrintOutString "rax: ";
PrintOutRaxInHex;
PrintOutNL; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Xor rax, rax;
PrintOutString "rax: ";
PrintOutRaxInHex;
PrintOutNL; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
ok Assemble(avx512=>0, eq=><<END)
rax: 6261 6261 6261 6261
rax: .... .... .... ....
END
PrintString($channel, @string)
Print a constant string to the specified channel.
Parameter Description
1 $channel Channel
2 @string Strings
PrintStringNL($channel, @string)
Print a constant string to the specified channel followed by a new line.
Parameter Description
1 $channel Channel
2 @string Strings
PrintErrString(@string)
Print a constant string to stderr.
Parameter Description
1 @string String
PrintErrStringNL(@string)
Print a constant string to stderr followed by a new line.
Parameter Description
1 @string String
Example:
PrintOutStringNL "Hello World";
PrintOutStringNL "Hello
World";
PrintErrStringNL "Hello World"; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
ok Assemble debug => 0, eq => <<END, avx512=>0, label=>'t1';
Hello World
Hello
World
END
PrintOutString(@string)
Print a constant string to stdout.
Parameter Description
1 @string String
Example:
my $q = Rs('abababab');
Mov(rax, "[$q]");
PrintOutString "rax: "; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRaxInHex;
PrintOutNL;
Xor rax, rax;
PrintOutString "rax: "; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRaxInHex;
PrintOutNL;
ok Assemble(avx512=>0, eq=><<END)
rax: 6261 6261 6261 6261
rax: .... .... .... ....
END
PrintOutStringNL(@string)
Print a constant string to stdout followed by a new line.
Parameter Description
1 @string String
Example:
PrintOutStringNL "Hello World"; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutStringNL "Hello
World"; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintErrStringNL "Hello World";
ok Assemble debug => 0, eq => <<END, avx512=>0, label=>'t1';
Hello World
Hello
World
END
PrintCString($channel, $string)
Print a zero terminated C style string addressed by a variable on the specified channel.
Parameter Description
1 $channel Channel
2 $string String
PrintCStringNL($channel, $string)
Print a zero terminated C style string addressed by a variable on the specified channel followed by a new line.
Parameter Description
1 $channel Channel
2 $string Strings
PrintSpace($channel, $spaces)
Print a constant number of spaces to the specified channel.
Parameter Description
1 $channel Channel
2 $spaces Number of spaces if not one.
PrintErrSpace($spaces)
Print a constant number of spaces to stderr.
Parameter Description
1 $spaces Number of spaces if not one.
PrintOutSpace($spaces)
Print a constant number of spaces to stdout.
Parameter Description
1 $spaces Number of spaces if not one.
Registers
Print selected registers in a variety of formats.
PrintRaxInHex($channel, $end)
Write the content of register rax in hexadecimal in big endian notation to the specified channel.
Parameter Description
1 $channel Channel
2 $end Optional end byte
PrintErrRaxInHex()
Write the content of register rax in hexadecimal in big endian notation to stderr.
PrintErrRaxInHexNL()
Write the content of register rax in hexadecimal in big endian notation to stderr followed by a new line.
PrintOutRaxInHex()
Write the content of register rax in hexadecimal in big endian notation to stout.
Example:
my $q = Rs('abababab');
Mov(rax, "[$q]");
PrintOutString "rax: ";
PrintOutRaxInHex; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutNL;
Xor rax, rax;
PrintOutString "rax: ";
PrintOutRaxInHex; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutNL;
ok Assemble(avx512=>0, eq=><<END)
rax: 6261 6261 6261 6261
rax: .... .... .... ....
END
PrintOutRaxInHexNL()
Write the content of register rax in hexadecimal in big endian notation to stdout followed by a new line.
Example:
my $s = Rb(0..255);
Vmovdqu64 xmm1, "[$s]";
PrintOutRegisterInHex xmm1;
PrintOutRegisterInHex xmm1;
Vmovdqu64 ymm1, "[$s]";
PrintOutRegisterInHex ymm1;
PrintOutRegisterInHex ymm1;
Vmovdqu64 zmm1, "[$s]";
PrintOutRegisterInHex zmm1;
PrintOutRegisterInHex zmm1;
ok Assemble avx512=>1, debug=>0, eq =><<END;
xmm1: .F.E .D.C .B.A .9.8 .7.6 .5.4 .3.2 .1..
xmm1: .F.E .D.C .B.A .9.8 .7.6 .5.4 .3.2 .1..
ymm1: 1F1E 1D1C 1B1A 1918 1716 1514 1312 1110 - .F.E .D.C .B.A .9.8 .7.6 .5.4 .3.2 .1..
ymm1: 1F1E 1D1C 1B1A 1918 1716 1514 1312 1110 - .F.E .D.C .B.A .9.8 .7.6 .5.4 .3.2 .1..
zmm1: 3F3E 3D3C 3B3A 3938 3736 3534 3332 3130 - 2F2E 2D2C 2B2A 2928 2726 2524 2322 2120 + 1F1E 1D1C 1B1A 1918 1716 1514 1312 1110 - .F.E .D.C .B.A .9.8 .7.6 .5.4 .3.2 .1..
zmm1: 3F3E 3D3C 3B3A 3938 3736 3534 3332 3130 - 2F2E 2D2C 2B2A 2928 2726 2524 2322 2120 + 1F1E 1D1C 1B1A 1918 1716 1514 1312 1110 - .F.E .D.C .B.A .9.8 .7.6 .5.4 .3.2 .1..
END
PrintRax_InHex($channel, $end)
Write the content of register rax in hexadecimal in big endian notation to the specified channel replacing zero bytes with __.
Parameter Description
1 $channel Channel
2 $end Optional end byte
PrintErrRax_InHex()
Write the content of register rax in hexadecimal in big endian notation to stderr.
PrintErrRax_InHexNL()
Write the content of register rax in hexadecimal in big endian notation to stderr followed by a new line.
PrintOutRax_InHex()
Write the content of register rax in hexadecimal in big endian notation to stout.
PrintOutRax_InHexNL()
Write the content of register rax in hexadecimal in big endian notation to stdout followed by a new line.
PrintOutRaxInReverseInHex()
Write the content of register rax to stderr in hexadecimal in little endian notation.
Example:
Mov rax, 0x07654321;
Shl rax, 32;
Or rax, 0x07654321;
PushR rax;
PrintOutRaxInHex;
PrintOutNL;
PrintOutRaxInReverseInHex; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutNL;
Mov rax, rsp;
Mov rdi, 8;
PrintOutMemoryInHex;
PrintOutNL;
PopR rax;
Mov rax, 4096;
PushR rax;
Mov rax, rsp;
Mov rdi, 8;
PrintOutMemoryInHex;
PrintOutNL;
PopR rax;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
.765 4321 .765 4321
2143 65.7 2143 65.7
2143 65.7 2143 65.7
..10 .... .... ....
END
PrintOneRegisterInHex($channel, $r)
Print the named register as a hex string.
Parameter Description
1 $channel Channel to print on
2 $r Register to print
PrintErrOneRegisterInHex($r)
Print the named register as a hex string on stderr.
Parameter Description
1 $r Register to print
PrintErrOneRegisterInHexNL($r)
Print the named register as a hex string on stderr followed by new line.
Parameter Description
1 $r Register to print
PrintOutOneRegisterInHex($r)
Print the named register as a hex string on stdout.
Parameter Description
1 $r Register to print
PrintOutOneRegisterInHexNL($r)
Print the named register as a hex string on stdout followed by new line.
Parameter Description
1 $r Register to print
PrintRegisterInHex($channel, @r)
Print the named registers as hex strings.
Parameter Description
1 $channel Channel to print on
2 @r Names of the registers to print
PrintErrRegisterInHex(@r)
Print the named registers as hex strings on stderr.
Parameter Description
1 @r Names of the registers to print
PrintOutRegisterInHex(@r)
Print the named registers as hex strings on stdout.
Parameter Description
1 @r Names of the registers to print
PrintOutRegistersInHex()
Print the general purpose registers in hex.
Example:
my $q = Rs('abababab');
Mov r10, 0x10;
Mov r11, 0x11;
Mov r12, 0x12;
Mov r13, 0x13;
Mov r14, 0x14;
Mov r15, 0x15;
Mov r8, 0x08;
Mov r9, 0x09;
Mov rax, 1;
Mov rbx, 2;
Mov rcx, 3;
Mov rdi, 4;
Mov rdx, 5;
Mov rsi, 6;
PrintOutRegistersInHex; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
my $r = Assemble(avx512=>0, eq=><<END, debug=>0);
rfl: .... .... .... .2.2
r10: .... .... .... ..10
r11: .... .... .... .2.6
r12: .... .... .... ..12
r13: .... .... .... ..13
r14: .... .... .... ..14
r15: .... .... .... ..15
r8: .... .... .... ...8
r9: .... .... .... ...9
rax: .... .... .... ...1
rbx: .... .... .... ...2
rcx: .... .... ..40 1922
rdi: .... .... .... ...4
rdx: .... .... .... ...5
rsi: .... .... .... ...6
END
Zero Flag
Print zero flag
PrintErrZF()
Print the zero flag without disturbing it on stderr.
PrintOutZF()
Print the zero flag without disturbing it on stdout.
Example:
SetZF;
PrintOutZF; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
ClearZF;
PrintOutZF; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
SetZF;
PrintOutZF; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
SetZF;
PrintOutZF; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
ClearZF;
PrintOutZF; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
SetZF;
IfZ Then {PrintOutStringNL "Zero"}, Else {PrintOutStringNL "NOT zero"};
ClearZF;
IfNz Then {PrintOutStringNL "NOT zero"}, Else {PrintOutStringNL "Zero"};
Mov r15, 5;
Shr r15, 1; IfC Then {PrintOutStringNL "Carry"} , Else {PrintOutStringNL "NO carry"};
Shr r15, 1; IfC Then {PrintOutStringNL "Carry"} , Else {PrintOutStringNL "NO carry"};
Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
Shr r15, 1; IfNc Then {PrintOutStringNL "NO carry"}, Else {PrintOutStringNL "Carry"};
ok Assemble(debug => 0, eq => <<END, avx512=>0);
ZF=1
ZF=0
ZF=1
ZF=1
ZF=0
Zero
NOT zero
Carry
NO carry
Carry
NO carry
END
Hexadecimal
Print numbers in hexadecimal right justified in a field
PrintRightInHex($channel, $number, $width)
Print out a number in hex right justified in a field of specified width on the specified channel
Parameter Description
1 $channel Channel
2 $number Number as a variable
3 $width Width of output field as a variable
PrintErrRightInHex($number, $width)
Write the specified variable in hexadecimal right justified in a field of specified width on stderr.
Parameter Description
1 $number Number as a variable
2 $width Width of output field as a variable
PrintErrRightInHexNL($number, $width)
Write the specified variable in hexadecimal right justified in a field of specified width on stderr followed by a new line.
Parameter Description
1 $number Number as a variable
2 $width Width of output field as a variable
PrintOutRightInHex($number, $width)
Write the specified variable in hexadecimal right justified in a field of specified width on stdout.
Parameter Description
1 $number Number as a variable
2 $width Width of output field as a variable
PrintOutRightInHexNL($number, $width)
Write the specified variable in hexadecimal right justified in a field of specified width on stdout followed by a new line.
Parameter Description
1 $number Number as a variable
2 $width Width of output field as a variable
Example:
my $N = K number => 0x12345678;
for my $i(reverse 1..16)
{PrintOutRightInHexNL($N, K width => $i); # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
}
ok Assemble(debug => 0, trace => 0, eq => <<END, avx512=>1);
12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678
2345678
345678
45678
5678
678
78
8
END
Binary
Print numbers in binary right justified in a field
PrintRightInBin($channel, $number, $width)
Print out a number in hex right justified in a field of specified width on the specified channel
Parameter Description
1 $channel Channel
2 $number Number as a variable
3 $width Width of output field as a variable
PrintErrRightInBin($number, $width)
Write the specified variable in binary right justified in a field of specified width on stderr.
Parameter Description
1 $number Number as a variable
2 $width Width of output field as a variable
PrintErrRightInBinNL($number, $width)
Write the specified variable in binary right justified in a field of specified width on stderr followed by a new line.
Parameter Description
1 $number Number as a variable
2 $width Width of output field as a variable
PrintOutRightInBin($number, $width)
Write the specified variable in binary right justified in a field of specified width on stdout.
Parameter Description
1 $number Number as a variable
2 $width Width of output field as a variable
PrintOutRightInBinNL($number, $width)
Write the specified variable in binary right justified in a field of specified width on stdout followed by a new line.
Parameter Description
1 $number Number as a variable
2 $width Width of output field as a variable
Example:
K(count => 64)->for(sub
{my ($index, $start, $next, $end) = @_;
PrintOutRightInBinNL K(number => 0x99), K(max => 64) - $index; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
});
ok Assemble(debug => 0, eq => <<END, avx512=>0);
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
10011001
0011001
011001
11001
1001
001
01
1
END
Decimal
Print numbers in decimal right justified in fields of specified width.
PrintRaxInDec($channel)
Print rax in decimal on the specified channel.
Parameter Description
1 $channel Channel to write on
PrintOutRaxInDec()
Print rax in decimal on stdout.
PrintOutRaxInDecNL()
Print rax in decimal on stdout followed by a new line.
Example:
my $w = V width => 12;
Mov rax, 0;
PrintOutRaxRightInDecNL $w;
Mov rax, 0x2a;
PrintOutRaxRightInDecNL $w;
Mov rax, 1;
PrintOutRaxRightInDecNL $w;
Mov rax, 255;
PrintOutRaxRightInDecNL $w;
Mov rax, 123456;
PrintOutRaxRightInDecNL $w;
Mov rax, 1234567890;
PrintOutRaxRightInDecNL $w;
Mov rax, 0x2;
Shl rax, 16;
Mov rdx, 0xdfdc;
Or rax, rdx;
Shl rax, 16;
Mov rdx, 0x1c35;
Or rax, rdx;
PrintOutRaxRightInDecNL $w;
# 1C BE99 1A14
Mov rax, 0x1c;
Shl rax, 16;
Mov rdx, 0xbe99;
Or rax, rdx;
Shl rax, 16;
Mov rdx, 0x1a14;
Or rax, rdx;
PrintOutRaxInDecNL; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
# 2 EE33 3961
Mov rax, 0x2;
Shl rax, 16;
Mov rdx, 0xee33;
Or rax, rdx;
Shl rax, 16;
Mov rdx, 0x3961;
Or rax, rdx;
PrintOutRaxRightInDecNL $w;
ok Assemble avx512=>0, eq => <<END;
0
42
1
255
123456
1234567890
12345678901
123456789012
12586269025
END
PrintErrRaxInDec()
Print rax in decimal on stderr.
PrintErrRaxInDecNL()
Print rax in decimal on stderr followed by a new line.
PrintRaxRightInDec($width, $channel)
Print rax in decimal right justified in a field of the specified width on the specified channel.
Parameter Description
1 $width Width
2 $channel Channel
PrintErrRaxRightInDec($width)
Print rax in decimal right justified in a field of the specified width on stderr.
Parameter Description
1 $width Width ::copy
PrintErrRaxRightInDecNL($width)
Print rax in decimal right justified in a field of the specified width on stderr followed by a new line.
Parameter Description
1 $width Width
PrintOutRaxRightInDec($width)
Print rax in decimal right justified in a field of the specified width on stdout.
Parameter Description
1 $width Width
Example:
my $w = V width => 12;
Mov rax, 0;
PrintOutRaxRightInDecNL $w;
Mov rax, 0x2a;
PrintOutRaxRightInDecNL $w;
Mov rax, 1;
PrintOutRaxRightInDecNL $w;
Mov rax, 255;
PrintOutRaxRightInDecNL $w;
Mov rax, 123456;
PrintOutRaxRightInDecNL $w;
Mov rax, 1234567890;
PrintOutRaxRightInDecNL $w;
Mov rax, 0x2;
Shl rax, 16;
Mov rdx, 0xdfdc;
Or rax, rdx;
Shl rax, 16;
Mov rdx, 0x1c35;
Or rax, rdx;
PrintOutRaxRightInDecNL $w;
# 1C BE99 1A14
Mov rax, 0x1c;
Shl rax, 16;
Mov rdx, 0xbe99;
Or rax, rdx;
Shl rax, 16;
Mov rdx, 0x1a14;
Or rax, rdx;
PrintOutRaxInDecNL;
# 2 EE33 3961
Mov rax, 0x2;
Shl rax, 16;
Mov rdx, 0xee33;
Or rax, rdx;
Shl rax, 16;
Mov rdx, 0x3961;
Or rax, rdx;
PrintOutRaxRightInDecNL $w;
ok Assemble avx512=>0, eq => <<END;
0
42
1
255
123456
1234567890
12345678901
123456789012
12586269025
END
Mov rax, 0x2a;
PrintOutRaxRightInDec V width=> 4; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Shl rax, 1;
PrintOutRaxRightInDecNL V width=> 6;
ok Assemble eq => <<END, avx512=>0;
42 84
END
PrintOutRaxRightInDecNL($width)
Print rax in decimal right justified in a field of the specified width on stdout followed by a new line.
Parameter Description
1 $width Width
Example:
Mov rax, 0x2a;
PrintOutRaxRightInDec V width=> 4;
Shl rax, 1;
PrintOutRaxRightInDecNL V width=> 6; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
ok Assemble eq => <<END, avx512=>0;
42 84
END
PrintRaxAsText($channel)
Print the string in rax on the specified channel.
Parameter Description
1 $channel Channel to write on
PrintOutRaxAsText()
Print rax as text on stdout.
PrintOutRaxAsTextNL()
Print rax as text on stdout followed by a new line.
Example:
my $t = Rs('abcdefghi');
Mov rax, $t;
Mov rax, "[rax]";
PrintOutRaxAsTextNL; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
ok Assemble eq => <<END, avx512=>0;
abcdefgh
END
}
#latest:
if (1) { ;
my $e = q(parameters);
(V string => "[rbp+8]")->outInDecNL;
(V string => "[rbp+16]")->outCStringNL;
(V string => "[rbp+24]")->outCStringNL;
(V string => "[rbp+32]")->outCStringNL;
(V string => "[rbp+40]")->outCStringNL;
(V string => "[rbp+48]")->outInDecNL;
(V string => "[rbp+8]")->for(sub
{my ($index, $start, $next, $end) = @_;
$index->setReg(rax);
Inc rax;
PrintOutRaxInDec;
Inc rax;
PrintOutString " : ";
Shl rax, 3;
(V string => "[rbp+rax]")->outCStringNL;
});
Assemble keep => $e;
is_deeply scalar(qx(./$e AaAaAaAaAa BbCcDdEe 123456789)), <<END;
string: 4
./parameters
AaAaAaAaAa
BbCcDdEe
123456789
string: 0
1 : ./parameters
2 : AaAaAaAaAa
3 : BbCcDdEe
4 : 123456789
END
unlink $e;
V( loop => 16)->for(sub
{my ($index, $start, $next, $end) = @_;
$index->setReg(rax);
Add rax, 0xb0; Shl rax, 16;
Mov ax, 0x9d9d; Shl rax, 8;
Mov al, 0xf0;
PrintOutRaxAsText;
});
PrintOutNL;
ok Assemble(debug => 0, trace => 0, eq => <<END, avx512=>0);
𝝰𝝱𝝲𝝳𝝴𝝵𝝶𝝷𝝸𝝹𝝺𝝻𝝼𝝽𝝾𝝿
END
PrintErrRaxAsText()
Print rax as text on stderr.
PrintErrRaxAsTextNL()
Print rax as text on stderr followed by a new line.
PrintRaxAsChar($channel)
Print the ascii character in rax on the specified channel.
Parameter Description
1 $channel Channel to write on
PrintOutRaxAsChar()
Print the character in on stdout.
Example:
my $e = q(readChar);
ForEver
{my ($start, $end) = @_;
ReadChar;
Cmp rax, 0xa;
Jle $end;
PrintOutRaxAsChar; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRaxAsChar; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
};
PrintOutNL;
Assemble keep => $e;
is_deeply qx(echo "ABCDCBA" | ./$e), <<END;
AABBCCDDCCBBAA
END
unlink $e;
PrintOutRaxAsCharNL()
Print the character in on stdout followed by a new line.
PrintErrRaxAsChar()
Print the character in on stderr.
PrintErrRaxAsCharNL()
Print the character in on stderr followed by a new line.
Variables
Variable definitions and operations
Definitions
Variable definitions
Variable($name, $expr, %options)
Create a new variable with the specified name initialized via an optional expression.
Parameter Description
1 $name Name of variable
2 $expr Optional expression initializing variable
3 %options Options
Nasm::X86::Variable::at($variable)
Return a "[register expression]" to address the data in the variable in the current stack frame
Parameter Description
1 $variable Variable descriptor
Example:
if (1)
{my $v = V var => 2;
Mov rax, $v->at;
PrintOutRegisterInHex rax;
ok Assemble eq=><<END, avx512=>1, mix=> $TraceMode ? 2 : 1;
rax: .... .... .... ...2
END
}
K($name, $expr)
Define a constant variable.
Parameter Description
1 $name Name of variable
2 $expr Initializing expression
Example:
my $s = Subroutine
{my ($p) = @_;
$$p{v}->copy($$p{v} + $$p{k} + $$p{g} + 1);
} name => 'add', parameters=>[qw(v k g)];
my $v = V(v => 1);
my $k = K(k => 2); # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
my $g = V(g => 3);
$s->call(parameters=>{v=>$v, k=>$k, g=>$g});
$v->outNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
v: .... .... .... ...7
END
my $g = V g => 0;
my $s = Subroutine
{my ($p) = @_;
$$p{g}->copy(K value => 1); # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
} name => 'ref2', parameters=>[qw(g)];
my $t = Subroutine
{my ($p) = @_;
$s->call(parameters=>{g=>$$p{g}});
} name => 'ref', parameters=>[qw(g)];
$t->call(parameters=>{g=>$g});
$g->outNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
g: .... .... .... ...1
END
my $a = V(a => 3); $a->outNL;
my $b = K(b => 2); $b->outNL; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
my $c = $a + $b; $c->outNL;
my $d = $c - $a; $d->outNL;
my $g = $a * $b; $g->outNL;
my $h = $g / $b; $h->outNL;
my $i = $a % $b; $i->outNL;
If ($a == 3,
Then
{PrintOutStringNL "a == 3"
},
Else
{PrintOutStringNL "a != 3"
});
++$a; $a->outNL;
--$a; $a->outNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
a: .... .... .... ...3
b: .... .... .... ...2
(a add b): .... .... .... ...5
((a add b) sub a): .... .... .... ...2
(a times b): .... .... .... ...6
((a times b) / b): .... .... .... ...3
(a % b): .... .... .... ...1
a == 3
a: .... .... .... ...4
a: .... .... .... ...3
END
R($name)
Define a reference variable.
Parameter Description
1 $name Name of variable
V($name, $expr)
Define a variable.
Parameter Description
1 $name Name of variable
2 $expr Initializing expression
Example:
my $s = Subroutine
{my ($p) = @_;
$$p{v}->copy($$p{v} + $$p{k} + $$p{g} + 1);
} name => 'add', parameters=>[qw(v k g)];
my $v = V(v => 1); # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
my $k = K(k => 2);
my $g = V(g => 3); # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
$s->call(parameters=>{v=>$v, k=>$k, g=>$g});
$v->outNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
v: .... .... .... ...7
END
my $g = V g => 0; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
my $s = Subroutine
{my ($p) = @_;
$$p{g}->copy(K value => 1);
} name => 'ref2', parameters=>[qw(g)];
my $t = Subroutine
{my ($p) = @_;
$s->call(parameters=>{g=>$$p{g}});
} name => 'ref', parameters=>[qw(g)];
$t->call(parameters=>{g=>$g});
$g->outNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
g: .... .... .... ...1
END
my $a = V(a => 3); $a->outNL; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
my $b = K(b => 2); $b->outNL;
my $c = $a + $b; $c->outNL;
my $d = $c - $a; $d->outNL;
my $g = $a * $b; $g->outNL;
my $h = $g / $b; $h->outNL;
my $i = $a % $b; $i->outNL;
If ($a == 3,
Then
{PrintOutStringNL "a == 3"
},
Else
{PrintOutStringNL "a != 3"
});
++$a; $a->outNL;
--$a; $a->outNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
a: .... .... .... ...3
b: .... .... .... ...2
(a add b): .... .... .... ...5
((a add b) sub a): .... .... .... ...2
(a times b): .... .... .... ...6
((a times b) / b): .... .... .... ...3
(a % b): .... .... .... ...1
a == 3
a: .... .... .... ...4
a: .... .... .... ...3
END
Print variables
Print the values of variables or the memory addressed by them
Nasm::X86::Variable::err($left, $title1, $title2)
Dump the value of a variable on stderr.
Parameter Description
1 $left Left variable
2 $title1 Optional leading title
3 $title2 Optional trailing title
Nasm::X86::Variable::out($left, $title1, $title2)
Dump the value of a variable on stdout.
Parameter Description
1 $left Left variable
2 $title1 Optional leading title
3 $title2 Optional trailing title
Nasm::X86::Variable::errNL($left, $title1, $title2)
Dump the value of a variable on stderr and append a new line.
Parameter Description
1 $left Left variable
2 $title1 Optional leading title
3 $title2 Optional trailing title
Nasm::X86::Variable::d($left, $title1, $title2)
Dump the value of a variable on stderr and append the source file calling line in a format that Geany understands
Parameter Description
1 $left Left variable
2 $title1 Optional leading title
3 $title2 Optional trailing title
Nasm::X86::Variable::outNL($left, $title1, $title2)
Dump the value of a variable on stdout and append a new line.
Parameter Description
1 $left Left variable
2 $title1 Optional leading title
3 $title2 Optional trailing title
Example:
my $a = V a => 0x1111;
$a->outNL('');
$a->outRightInBinNL(K width => 16);
$a->outRightInDecNL(K width => 16);
$a->outRightInHexNL(K width => 16);
ok Assemble(debug => 0, eq => <<END, avx512=>1);
.... .... .... 1111
1000100010001
4369
1111
END
Nasm::X86::Variable::debug22($left)
Dump the value of a variable on stderr with an indication of where the dump came from.
Parameter Description
1 $left Left variable
Decimal representation
Print out a variable as a decimal number
Nasm::X86::Variable::errInDec($number, $title1, $title2)
Dump the value of a variable on stderr in decimal.
Parameter Description
1 $number Number as variable
2 $title1 Optional leading title
3 $title2 Optional trailing title
Nasm::X86::Variable::errInDecNL($number, $title1, $title2)
Dump the value of a variable on stderr in decimal followed by a new line.
Parameter Description
1 $number Number as variable
2 $title1 Optional leading title
3 $title2 Optional trailing title
Nasm::X86::Variable::outInDec($number, $title1, $title2)
Dump the value of a variable on stdout in decimal.
Parameter Description
1 $number Number as variable
2 $title1 Optional leading title
3 $title2 Optional trailing title
Nasm::X86::Variable::outInDecNL($number, $title1, $title2)
Dump the value of a variable on stdout in decimal followed by a new line.
Parameter Description
1 $number Number as variable
2 $title1 Optional leading title
3 $title2 Optional trailing title
Example:
my $e = q(parameters);
(V string => "[rbp+8]")->outInDecNL;
(V string => "[rbp+16]")->outCStringNL;
(V string => "[rbp+24]")->outCStringNL;
(V string => "[rbp+32]")->outCStringNL;
(V string => "[rbp+40]")->outCStringNL;
(V string => "[rbp+48]")->outInDecNL;
(V string => "[rbp+8]")->for(sub
{my ($index, $start, $next, $end) = @_;
$index->setReg(rax);
Inc rax;
PrintOutRaxInDec;
Inc rax;
PrintOutString " : ";
Shl rax, 3;
(V string => "[rbp+rax]")->outCStringNL;
});
Assemble keep => $e;
is_deeply scalar(qx(./$e AaAaAaAaAa BbCcDdEe 123456789)), <<END;
string: 4
./parameters
AaAaAaAaAa
BbCcDdEe
123456789
string: 0
1 : ./parameters
2 : AaAaAaAaAa
3 : BbCcDdEe
4 : 123456789
END
unlink $e;
Decimal representation right justified
Print out a variable as a decimal number right adjusted in a field of specified width
Nasm::X86::Variable::rightInDec($number, $channel, $width)
Dump the value of a variable on the specified channel as a decimal number right adjusted in a field of specified width.
Parameter Description
1 $number Number as variable
2 $channel Channel
3 $width Width
Nasm::X86::Variable::errRightInDec($number, $width)
Dump the value of a variable on stderr as a decimal number right adjusted in a field of specified width.
Parameter Description
1 $number Number
2 $width Width
Nasm::X86::Variable::errRightInDecNL($number, $width)
Dump the value of a variable on stderr as a decimal number right adjusted in a field of specified width followed by a new line.
Parameter Description
1 $number Number
2 $width Width
Nasm::X86::Variable::outRightInDec($number, $width)
Dump the value of a variable on stdout as a decimal number right adjusted in a field of specified width.
Parameter Description
1 $number Number
2 $width Width
Nasm::X86::Variable::outRightInDecNL($number, $width)
Dump the value of a variable on stdout as a decimal number right adjusted in a field of specified width followed by a new line.
Parameter Description
1 $number Number
2 $width Width
Hexadecimal representation, right justified
Print number variables in hexadecimal right justified in fields of specified width.
Nasm::X86::Variable::rightInHex($number, $channel, $width)
Write the specified variable number in hexadecimal right justified in a field of specified width to the specified channel.
Parameter Description
1 $number Number to print as a variable
2 $channel Channel to print on
3 $width Width of output field
Nasm::X86::Variable::errRightInHex($number, $width)
Write the specified variable number in hexadecimal right justified in a field of specified width to stderr
Parameter Description
1 $number Number to print as a variable
2 $width Width of output field
Nasm::X86::Variable::errRightInHexNL($number, $width)
Write the specified variable number in hexadecimal right justified in a field of specified width to stderr followed by a new line
Parameter Description
1 $number Number to print as a variable
2 $width Width of output field
Nasm::X86::Variable::outRightInHex($number, $width)
Write the specified variable number in hexadecimal right justified in a field of specified width to stdout
Parameter Description
1 $number Number to print as a variable
2 $width Width of output field
Nasm::X86::Variable::outRightInHexNL($number, $width)
Write the specified variable number in hexadecimal right justified in a field of specified width to stdout followed by a new line
Parameter Description
1 $number Number to print as a variable
2 $width Width of output field
Binary representation, right justified
Print number variables in binary right justified in fields of specified width.
Nasm::X86::Variable::rightInBin($number, $channel, $width)
Write the specified variable number in binary right justified in a field of specified width to the specified channel.
Parameter Description
1 $number Number to print as a variable
2 $channel Channel to print on
3 $width Width of output field
Nasm::X86::Variable::errRightInBin($number, $width)
Write the specified variable number in binary right justified in a field of specified width to stderr
Parameter Description
1 $number Number to print as a variable
2 $width Width of output field
Nasm::X86::Variable::errRightInBinNL($number, $width)
Write the specified variable number in binary right justified in a field of specified width to stderr followed by a new line
Parameter Description
1 $number Number to print as a variable
2 $width Width of output field
Nasm::X86::Variable::outRightInBin($number, $width)
Write the specified variable number in binary right justified in a field of specified width to stdout
Parameter Description
1 $number Number to print as a variable
2 $width Width of output field
Nasm::X86::Variable::outRightInBinNL($number, $width)
Write the specified variable number in binary right justified in a field of specified width to stdout followed by a new line
Parameter Description
1 $number Number to print as a variable
2 $width Width of output field
Spaces
Print out a variable number of spaces
Nasm::X86::Variable::spaces($count, $channel)
Print the specified number of spaces to the specified channel.
Parameter Description
1 $count Number of spaces
2 $channel Channel
Nasm::X86::Variable::errSpaces($count)
Print the specified number of spaces to stderr.
Parameter Description
1 $count Number of spaces
Nasm::X86::Variable::outSpaces($count)
Print the specified number of spaces to stdout.
Parameter Description
1 $count Number of spaces
C style zero terminated strings
Print out C style zero terminated strings.
Nasm::X86::Variable::errCString($string)
Print a zero terminated C style string addressed by a variable on stderr.
Parameter Description
1 $string String
Nasm::X86::Variable::errCStringNL($string)
Print a zero terminated C style string addressed by a variable on stderr followed by a new line.
Parameter Description
1 $string String
Nasm::X86::Variable::outCString($string)
Print a zero terminated C style string addressed by a variable on stdout.
Parameter Description
1 $string String
Nasm::X86::Variable::outCStringNL($string)
Print a zero terminated C style string addressed by a variable on stdout followed by a new line.
Parameter Description
1 $string String
Example:
my $s = Rutf8 '𝝰𝝱𝝲𝝳';
V(address => $s)->outCStringNL;
ok Assemble(debug => 0, trace => 0, eq => <<END, avx512=>0);
𝝰𝝱𝝲𝝳
END
my $e = q(parameters);
(V string => "[rbp+8]")->outInDecNL;
(V string => "[rbp+16]")->outCStringNL;
(V string => "[rbp+24]")->outCStringNL;
(V string => "[rbp+32]")->outCStringNL;
(V string => "[rbp+40]")->outCStringNL;
(V string => "[rbp+48]")->outInDecNL;
(V string => "[rbp+8]")->for(sub
{my ($index, $start, $next, $end) = @_;
$index->setReg(rax);
Inc rax;
PrintOutRaxInDec;
Inc rax;
PrintOutString " : ";
Shl rax, 3;
(V string => "[rbp+rax]")->outCStringNL;
});
Assemble keep => $e;
is_deeply scalar(qx(./$e AaAaAaAaAa BbCcDdEe 123456789)), <<END;
string: 4
./parameters
AaAaAaAaAa
BbCcDdEe
123456789
string: 0
1 : ./parameters
2 : AaAaAaAaAa
3 : BbCcDdEe
4 : 123456789
END
unlink $e;
Addressing
Create references to variables and dereference variables
Nasm::X86::Variable::address($source)
Create a variable that contains the address of another variable
Parameter Description
1 $source Source variable
Nasm::X86::Variable::dereference($address)
Create a variable that contains the contents of the variable addressed by the specified variable
Parameter Description
1 $address Source variable
Nasm::X86::Variable::update($address, $content)
Update the content of the addressed variable with the content of the specified variable
Parameter Description
1 $address Source variable
2 $content Content
constantString($string)
Return the address and length of a constant string as two variables.
Parameter Description
1 $string Constant utf8 string
Example:
my ($t, $l) = constantString("Hello World"); # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
$t->printOutMemoryNL($l);
ok Assemble eq => <<END, avx512=>1;
Hello World
END
my $a = CreateArea;
my ($s, $l) = constantString("1234567"); # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
my $t = $a->treeFromString($s, $l);
$t->dump8xx("AA");
$t->push(my $v = K key => 0x99);
$t->dump8xx("BB");
my $T = $a->CreateTree;
$T->putString($t);
$T->dump8xx("CC");
$t->pop;
my $S = $T->getString($t);
$S->found->outNL;
$S->data ->outNL;
ok Assemble eq => <<END, avx512=>1, label=>'t4';
AA
Tree: .... .... .... ..40
At: 80 length: 7, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3 4 5 6
Keys : 0 1 2 3 4 5 6
Data : 31 32 33 34 35 36 37
end
BB
Tree: .... .... .... ..40
At: 80 length: 8, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3 4 5 6 7
Keys : 0 1 2 3 4 5 6 7
Data : 31 32 33 34 35 36 37 99
end
CC
Tree: .... .... .... .140
At: 1C0 length: 1, data: 200, nodes: 240, first: 140, root, leaf, trees: 1
Index: 0
Keys : 31
Data : 18*
Tree: 180
At: 2C0 length: 1, data: 300, nodes: 340, first: 180, root, leaf, trees: 1
Index: 0
Keys : 32
Data : 28*
Tree: 280
At: 3C0 length: 1, data: 400, nodes: 440, first: 280, root, leaf, trees: 1
Index: 0
Keys : 33
Data : 38*
Tree: 380
At: 4C0 length: 1, data: 500, nodes: 540, first: 380, root, leaf, trees: 1
Index: 0
Keys : 34
Data : 48*
Tree: 480
At: 5C0 length: 1, data: 600, nodes: 640, first: 480, root, leaf, trees: 1
Index: 0
Keys : 35
Data : 58*
Tree: 580
At: 6C0 length: 1, data: 700, nodes: 740, first: 580, root, leaf, trees: 1
Index: 0
Keys : 36
Data : 68*
Tree: 680
At: 7C0 length: 1, data: 800, nodes: 840, first: 680, root, leaf, trees: 1
Index: 0
Keys : 37
Data : 78*
Tree: 780
At: 8C0 length: 1, data: 900, nodes: 940, first: 780, root, leaf, trees: 1
Index: 0
Keys : 99
Data : 88*
Tree: 880
- empty
end
end
end
end
end
end
end
end
found: .... .... .... ...1
data: .... .... .... .780
END
Operations
Variable operations
Nasm::X86::Variable::call($target)
Execute the call instruction for a target whose address is held in the specified variable.
Parameter Description
1 $target Variable containing the address of the code to call
Nasm::X86::Variable::addressExpr($left, $offset)
Create a register expression to address an offset form a variable
Parameter Description
1 $left Left variable
2 $offset Optional offset
Nasm::X86::Variable::clone($variable, $name)
Clone a variable to make a new variable.
Parameter Description
1 $variable Variable to clone
2 $name New name for variable
Example:
my $a = V('a', 1);
my $b = $a->clone('a');
$_->outNL for $a, $b;
ok Assemble(debug => 0, trace => 0, eq => <<END, avx512=>0);
a: .... .... .... ...1
a: .... .... .... ...1
END
Nasm::X86::Variable::copy($left, $right)
Copy one variable into another.
Parameter Description
1 $left Left variable
2 $right Right variable
Example:
my $s = Subroutine
{my ($p) = @_;
$$p{v}->copy($$p{v} + $$p{k} + $$p{g} + 1);
} name => 'add', parameters=>[qw(v k g)];
my $v = V(v => 1);
my $k = K(k => 2);
my $g = V(g => 3);
$s->call(parameters=>{v=>$v, k=>$k, g=>$g});
$v->outNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
v: .... .... .... ...7
END
my $g = V g => 0;
my $s = Subroutine
{my ($p) = @_;
$$p{g}->copy(K value => 1);
} name => 'ref2', parameters=>[qw(g)];
my $t = Subroutine
{my ($p) = @_;
$s->call(parameters=>{g=>$$p{g}});
} name => 'ref', parameters=>[qw(g)];
$t->call(parameters=>{g=>$g});
$g->outNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
g: .... .... .... ...1
END
Nasm::X86::Variable::copyRef($left, $right)
Copy a reference to a variable.
Parameter Description
1 $left Left variable
2 $right Right variable
Nasm::X86::Variable::copyZF($var)
Copy the current state of the zero flag into a variable.
Parameter Description
1 $var Variable
Example:
Mov r15, 1;
my $z = V(zf => undef);
Cmp r15, 1; $z->copyZF; $z->outNL;
Cmp r15, 2; $z->copyZF; $z->outNL;
Cmp r15, 1; $z->copyZFInverted; $z->outNL;
Cmp r15, 2; $z->copyZFInverted; $z->outNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
zf: .... .... .... ...1
zf: .... .... .... ....
zf: .... .... .... ....
zf: .... .... .... ...1
END
Nasm::X86::Variable::copyZFInverted($var)
Copy the opposite of the current state of the zero flag into a variable.
Parameter Description
1 $var Variable
Example:
Mov r15, 1;
my $z = V(zf => undef);
Cmp r15, 1; $z->copyZF; $z->outNL;
Cmp r15, 2; $z->copyZF; $z->outNL;
Cmp r15, 1; $z->copyZFInverted; $z->outNL;
Cmp r15, 2; $z->copyZFInverted; $z->outNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
zf: .... .... .... ...1
zf: .... .... .... ....
zf: .... .... .... ....
zf: .... .... .... ...1
END
Nasm::X86::Variable::equals($op, $left, $right)
Equals operator.
Parameter Description
1 $op Operator
2 $left Left variable
3 $right Right variable
Nasm::X86::Variable::assign($left, $op, $right)
Assign to the left hand side the value of the right hand side.
Parameter Description
1 $left Left variable
2 $op Operator
3 $right Right variable
Nasm::X86::Variable::plusAssign($left, $right)
Implement plus and assign.
Parameter Description
1 $left Left variable
2 $right Right variable
Nasm::X86::Variable::minusAssign($left, $right)
Implement minus and assign.
Parameter Description
1 $left Left variable
2 $right Right variable
Nasm::X86::Variable::arithmetic($op, $name, $left, $right)
Return a variable containing the result of an arithmetic operation on the left hand and right hand side variables.
Parameter Description
1 $op Operator
2 $name Operator name
3 $left Left variable
4 $right Right variable
Nasm::X86::Variable::add($left, $right)
Add the right hand variable to the left hand variable and return the result as a new variable.
Parameter Description
1 $left Left variable
2 $right Right variable
Nasm::X86::Variable::sub($left, $right)
Subtract the right hand variable from the left hand variable and return the result as a new variable.
Parameter Description
1 $left Left variable
2 $right Right variable
Nasm::X86::Variable::times($left, $right)
Multiply the left hand variable by the right hand variable and return the result as a new variable.
Parameter Description
1 $left Left variable
2 $right Right variable
Nasm::X86::Variable::division($op, $left, $right)
Return a variable containing the result or the remainder that occurs when the left hand side is divided by the right hand side.
Parameter Description
1 $op Operator
2 $left Left variable
3 $right Right variable
Nasm::X86::Variable::divide($left, $right)
Divide the left hand variable by the right hand variable and return the result as a new variable.
Parameter Description
1 $left Left variable
2 $right Right variable
Nasm::X86::Variable::mod($left, $right)
Divide the left hand variable by the right hand variable and return the remainder as a new variable.
Parameter Description
1 $left Left variable
2 $right Right variable
Nasm::X86::Variable::shiftLeft($left, $right)
Shift the left hand variable left by the number of bits specified in the right hand variable and return the result as a new variable.
Parameter Description
1 $left Left variable
2 $right Right variable
Nasm::X86::Variable::shiftRight($left, $right)
Shift the left hand variable right by the number of bits specified in the right hand variable and return the result as a new variable.
Parameter Description
1 $left Left variable
2 $right Right variable
Nasm::X86::Variable::not($left)
Form two complement of left hand side and return it as a variable.
Parameter Description
1 $left Left variable
Nasm::X86::Variable::booleanZF($sub, $op, $left, $right)
Combine the left hand variable with the right hand variable via a boolean operator and indicate the result by setting the zero flag if the result is true.
Parameter Description
1 $sub Operator
2 $op Operator name
3 $left Left variable
4 $right Right variable
Nasm::X86::Variable::eq($left, $right)
Check whether the left hand variable is equal to the right hand variable.
Parameter Description
1 $left Left variable
2 $right Right variable
Nasm::X86::Variable::ne($left, $right)
Check whether the left hand variable is not equal to the right hand variable.
Parameter Description
1 $left Left variable
2 $right Right variable
Nasm::X86::Variable::ge($left, $right)
Check whether the left hand variable is greater than or equal to the right hand variable.
Parameter Description
1 $left Left variable
2 $right Right variable
Nasm::X86::Variable::gt($left, $right)
Check whether the left hand variable is greater than the right hand variable.
Parameter Description
1 $left Left variable
2 $right Right variable
Nasm::X86::Variable::le($left, $right)
Check whether the left hand variable is less than or equal to the right hand variable.
Parameter Description
1 $left Left variable
2 $right Right variable
Nasm::X86::Variable::lt($left, $right)
Check whether the left hand variable is less than the right hand variable.
Parameter Description
1 $left Left variable
2 $right Right variable
Nasm::X86::Variable::isRef($variable)
Check whether the specified variable is a reference to another variable.
Parameter Description
1 $variable Variable
Nasm::X86::Variable::setReg($variable, $register)
Set the named registers from the content of the variable.
Parameter Description
1 $variable Variable
2 $register Register to load
Nasm::X86::Variable::compare($variable, $compare)
Compare the content of a variable with a numeric constant
Parameter Description
1 $variable Variable
2 $compare Value to compare
Nasm::X86::Variable::getReg($variable, $register)
Load the variable from a register expression.
Parameter Description
1 $variable Variable
2 $register Register expression to load
Nasm::X86::Variable::getConst($variable, $constant)
Load the variable from a constant in effect setting a variable to a specified value.
Parameter Description
1 $variable Variable
2 $constant Constant to load
Nasm::X86::Variable::incDec($left, $op)
Increment or decrement a variable.
Parameter Description
1 $left Left variable operator
2 $op Address of operator to perform inc or dec
Nasm::X86::Variable::inc($left)
Increment a variable.
Parameter Description
1 $left Variable
Nasm::X86::Variable::dec($left)
Decrement a variable.
Parameter Description
1 $left Variable
Nasm::X86::Variable::str($left)
The name of the variable.
Parameter Description
1 $left Variable
Nasm::X86::Variable::min($left, $right)
Minimum of two variables.
Parameter Description
1 $left Left variable
2 $right Right variable or constant
Example:
my $a = V("a", 1);
my $b = V("b", 2);
my $c = $a->min($b);
my $d = $a->max($b);
$a->outNL;
$b->outNL;
$c->outNL;
$d->outNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
a: .... .... .... ...1
b: .... .... .... ...2
min: .... .... .... ...1
max: .... .... .... ...2
END
Nasm::X86::Variable::max($left, $right)
Maximum of two variables.
Parameter Description
1 $left Left variable
2 $right Right variable or constant
Example:
my $a = V("a", 1);
my $b = V("b", 2);
my $c = $a->min($b);
my $d = $a->max($b);
$a->outNL;
$b->outNL;
$c->outNL;
$d->outNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
a: .... .... .... ...1
b: .... .... .... ...2
min: .... .... .... ...1
max: .... .... .... ...2
END
Nasm::X86::Variable::and($left, $right)
And two variables.
Parameter Description
1 $left Left variable
2 $right Right variable
Nasm::X86::Variable::or($left, $right)
Or two variables.
Parameter Description
1 $left Left variable
2 $right Right variable
Nasm::X86::Variable::setMask($start, $length, $mask)
Set the mask register to ones starting at the specified position for the specified length and zeroes elsewhere.
Parameter Description
1 $start Variable containing start of mask
2 $length Variable containing length of mask
3 $mask Mask register
Example:
my $start = V("Start", 7);
my $length = V("Length", 3);
$start->setMask($length, k7);
PrintOutRegisterInHex k7;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
k7: .... .... .... .380
END
my $z = V('zero', 0);
my $o = V('one', 1);
my $t = V('two', 2);
$z->setMask($o, k7); PrintOutRegisterInHex k7;
$z->setMask($t, k6); PrintOutRegisterInHex k6;
$z->setMask($o+$t, k5); PrintOutRegisterInHex k5;
$o->setMask($o, k4); PrintOutRegisterInHex k4;
$o->setMask($t, k3); PrintOutRegisterInHex k3;
$o->setMask($o+$t, k2); PrintOutRegisterInHex k2;
$t->setMask($o, k1); PrintOutRegisterInHex k1;
$t->setMask($t, k0); PrintOutRegisterInHex k0;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
k7: .... .... .... ...1
k6: .... .... .... ...3
k5: .... .... .... ...7
k4: .... .... .... ...2
k3: .... .... .... ...6
k2: .... .... .... ...E
k1: .... .... .... ...4
k0: .... .... .... ...C
END
Nasm::X86::Variable::setMaskFirst($length, $mask)
Set the first bits in the specified mask register.
Parameter Description
1 $length Variable containing length to set
2 $mask Mask register
Nasm::X86::Variable::setMaskBit($index, $mask)
Set a bit in the specified mask register retaining the other bits.
Parameter Description
1 $index Variable containing bit position to set
2 $mask Mask register
Nasm::X86::Variable::clearMaskBit($index, $mask)
Clear a bit in the specified mask register retaining the other bits.
Parameter Description
1 $index Variable containing bit position to clear
2 $mask Mask register
Nasm::X86::Variable::setBit($index, $mask)
Set a bit in the specified register retaining the other bits.
Parameter Description
1 $index Variable containing bit position to set
2 $mask Mask register
Nasm::X86::Variable::clearBit($index, $mask)
Clear a bit in the specified mask register retaining the other bits.
Parameter Description
1 $index Variable containing bit position to clear
2 $mask Mask register
Nasm::X86::Variable::setZmm($source, $zmm, $offset, $length)
Load bytes from the memory addressed by specified source variable into the numbered zmm register at the offset in the specified offset moving the number of bytes in the specified variable.
Parameter Description
1 $source Variable containing the address of the source
2 $zmm Number of zmm to load
3 $offset Variable containing offset in zmm to move to
4 $length Variable containing length of move
Example:
my $s = Rb(0..128);
my $source = V(Source=> $s);
if (1) # First block
{$source->setZmm(0, K(key => 7), K length => 3);
}
if (1) # Second block
{$source->setZmm(0, K(key => 33), K key => 12);
}
PrintOutRegisterInHex zmm0;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
zmm0: .... .... .... .... .... .... .... .... - .... ...B .A.9 .8.7 .6.5 .4.3 .2.1 .... + .... .... .... .... .... .... .... .... - .... .... .... .2.1 .... .... .... ....
END
Nasm::X86::Variable::loadZmm($source, $zmm)
Load bytes from the memory addressed by the specified source variable into the numbered zmm register.
Parameter Description
1 $source Variable containing the address of the source
2 $zmm Number of zmm to get
Nasm::X86::Variable::bFromZ($variable, $zmm, $offset)
Get the byte from the numbered zmm register and put it in a variable.
Parameter Description
1 $variable Variable
2 $zmm Numbered zmm
3 $offset Offset in bytes
Nasm::X86::Variable::wFromZ($variable, $zmm, $offset)
Get the word from the numbered zmm register and put it in a variable.
Parameter Description
1 $variable Variable
2 $zmm Numbered zmm
3 $offset Offset in bytes
Nasm::X86::Variable::dFromZ($variable, $zmm, $offset)
Get the double word from the numbered zmm register and put it in a variable.
Parameter Description
1 $variable Variable
2 $zmm Numbered zmm
3 $offset Offset in bytes
Nasm::X86::Variable::qFromZ($variable, $zmm, $offset)
Get the quad word from the numbered zmm register and put it in a variable.
Parameter Description
1 $variable Variable
2 $zmm Numbered zmm
3 $offset Offset in bytes
dFromPointInZ($point, $zmm, %options)
Get the double word from the numbered zmm register at a point specified by the variable or register and return it in a variable.
Parameter Description
1 $point Point
2 $zmm Numbered zmm
3 %options Options
Nasm::X86::Variable::dFromPointInZ($point, $zmm, %options)
Get the double word from the numbered zmm register at a point specified by the variable and return it in a variable.
Parameter Description
1 $point Point
2 $zmm Numbered zmm
3 %options Options
Example:
my $tree = DescribeTree(length => 7);
my $K = 31;
K(K => Rd(0..15))->loadZmm($K);
PrintOutRegisterInHex zmm $K;
K( offset => 1 << 5)->dFromPointInZ($K)->outNL;
ok Assemble eq => <<END, avx512=>1;
zmm31: .... ...F .... ...E .... ...D .... ...C - .... ...B .... ...A .... ...9 .... ...8 + .... ...7 .... ...6 .... ...5 .... ...4 - .... ...3 .... ...2 .... ...1 .... ....
d: .... .... .... ...5
END
Nasm::X86::Variable::dIntoPointInZ($point, $zmm, $content)
Put the variable double word content into the numbered zmm register at a point specified by the variable.
Parameter Description
1 $point Point
2 $zmm Numbered zmm
3 $content Content to be inserted as a variable
Nasm::X86::Variable::putBwdqIntoMm($content, $size, $mm, $offset)
Place the value of the content variable at the byte|word|double word|quad word in the numbered zmm register.
Parameter Description
1 $content Variable with content
2 $size Size of put
3 $mm Numbered zmm
4 $offset Offset in bytes
Nasm::X86::Variable::bIntoX($content, $xmm, $offset)
Place the value of the content variable at the byte in the numbered xmm register.
Parameter Description
1 $content Variable with content
2 $xmm Numbered xmm
3 $offset Offset in bytes
Nasm::X86::Variable::wIntoX($content, $xmm, $offset)
Place the value of the content variable at the word in the numbered xmm register.
Parameter Description
1 $content Variable with content
2 $xmm Numbered xmm
3 $offset Offset in bytes
Nasm::X86::Variable::dIntoX($content, $xmm, $offset)
Place the value of the content variable at the double word in the numbered xmm register.
Parameter Description
1 $content Variable with content
2 $xmm Numbered xmm
3 $offset Offset in bytes
Nasm::X86::Variable::qIntoX($content, $xmm, $offset)
Place the value of the content variable at the quad word in the numbered xmm register.
Parameter Description
1 $content Variable with content
2 $xmm Numbered xmm
3 $offset Offset in bytes
Nasm::X86::Variable::bIntoZ($content, $zmm, $offset)
Place the value of the content variable at the byte in the numbered zmm register.
Parameter Description
1 $content Variable with content
2 $zmm Numbered zmm
3 $offset Offset in bytes
Nasm::X86::Variable::putWIntoZmm($content, $zmm, $offset)
Place the value of the content variable at the word in the numbered zmm register.
Parameter Description
1 $content Variable with content
2 $zmm Numbered zmm
3 $offset Offset in bytes
Nasm::X86::Variable::dIntoZ($content, $zmm, $offset)
Place the value of the content variable at the double word in the numbered zmm register.
Parameter Description
1 $content Variable with content
2 $zmm Numbered zmm
3 $offset Offset in bytes
Example:
my $s = Rb(0..8);
my $c = V("Content", "[$s]");
$c->bIntoZ (0, 4);
$c->putWIntoZmm(0, 6);
$c->dIntoZ(0, 10);
$c->qIntoZ(0, 16);
PrintOutRegisterInHex zmm0;
bFromZ(zmm0, 12)->outNL;
wFromZ(zmm0, 12)->outNL;
dFromZ(zmm0, 12)->outNL;
qFromZ(zmm0, 12)->outNL;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
zmm0: .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .7.6 .5.4 .3.2 .1.. - .... .3.2 .1.. .... .1.. .... .... ....
b at offset 12 in zmm0: .... .... .... ...2
w at offset 12 in zmm0: .... .... .... .3.2
d at offset 12 in zmm0: .... .... .... .3.2
q at offset 12 in zmm0: .3.2 .1.. .... .3.2
END
Nasm::X86::Variable::qIntoZ($content, $zmm, $offset)
Place the value of the content variable at the quad word in the numbered zmm register.
Parameter Description
1 $content Variable with content
2 $zmm Numbered zmm
3 $offset Offset in bytes
Memory
Actions on memory described by variables
Nasm::X86::Variable::clearMemory($address, $size)
Clear the memory described in this variable.
Parameter Description
1 $address Address of memory to clear
2 $size Size of the memory to clear
Nasm::X86::Variable::copyMemory($target, $source, $size)
Copy from one block of memory to another.
Parameter Description
1 $target Address of target
2 $source Address of source
3 $size Length to copy
Nasm::X86::Variable::printMemory($address, $channel, $size)
Print the specified number of bytes from the memory addressed by the variable on the specified channel.
Parameter Description
1 $address Address of memory
2 $channel Channel to print on as a constant
3 $size Number of bytes to print
Nasm::X86::Variable::printErrMemory($address, $size)
Print the specified number of bytes of the memory addressed by the variable on stdout.
Parameter Description
1 $address Address of memory
2 $size Number of bytes to print
Nasm::X86::Variable::printErrMemoryNL($address, $size)
Print the specified number of bytes of the memory addressed by the variable on stdout followed by a new line.
Parameter Description
1 $address Address of memory
2 $size Number of bytes to print
Nasm::X86::Variable::printOutMemory($address, $size)
Print the specified number of bytes of the memory addressed by the variable on stdout.
Parameter Description
1 $address Address of memory
2 $size Number of bytes to print
Nasm::X86::Variable::printOutMemoryNL($address, $size)
Print the specified number of bytes of the memory addressed by the variable on stdout followed by a new line.
Parameter Description
1 $address Address of memory
2 $size Number of bytes to print
Nasm::X86::Variable::printMemoryInHexNL($address, $channel, $size)
Write, in hexadecimal, the memory addressed by a variable to stdout or stderr.
Parameter Description
1 $address Address of memory
2 $channel Channel to print on
3 $size Number of bytes to print
Nasm::X86::Variable::printErrMemoryInHexNL($address, $size)
Write the memory addressed by a variable to stderr.
Parameter Description
1 $address Address of memory
2 $size Number of bytes to print
Nasm::X86::Variable::printOutMemoryInHexNL($address, $size)
Write the memory addressed by a variable to stdout.
Parameter Description
1 $address Address of memory
2 $size Number of bytes to print
Example:
my $u = Rd(ord('𝝰'), ord('𝝱'), ord('𝝲'), ord('𝝳'));
Mov rax, $u;
my $address = V address=>rax;
$address->printOutMemoryInHexNL(K size => 16);
ok Assemble(debug => 0, trace => 0, eq => <<END, avx512=>0);
70D7 .1.. 71D7 .1.. 72D7 .1.. 73D7 .1..
END
my $v = V var => 2;
If $v == 0, Then {Mov rax, 0},
Ef {$v == 1} Then {Mov rax, 1},
Ef {$v == 2} Then {Mov rax, 2},
Else {Mov rax, 3};
PrintOutRegisterInHex rax;
ok Assemble(debug => 0, trace => 0, eq => <<END, avx512=>0);
rax: .... .... .... ...2
END
Nasm::X86::Variable::freeMemory($address, $size)
Free the memory addressed by this variable for the specified length.
Parameter Description
1 $address Address of memory to free
2 $size Size of the memory to free
Example:
my $N = K size => 2048;
my $q = Rs('a'..'p');
my $address = $N->allocateMemory;
Vmovdqu8 xmm0, "[$q]";
$address->setReg(rax);
Vmovdqu8 "[rax]", xmm0;
Mov rdi, 16;
PrintOutMemory;
PrintOutNL;
$address->freeMemory($N);
ok Assemble(debug => 0, eq => <<END, avx512=>1);
abcdefghijklmnop
END
Nasm::X86::Variable::allocateMemory($size)
Allocate a variable amount of memory via mmap and return its address.
Parameter Description
1 $size Size as a variable
Example:
my $N = K size => 2048;
my $q = Rs('a'..'p');
my $address = $N->allocateMemory;
Vmovdqu8 xmm0, "[$q]";
$address->setReg(rax);
Vmovdqu8 "[rax]", xmm0;
Mov rdi, 16;
PrintOutMemory;
PrintOutNL;
$address->freeMemory($N);
ok Assemble(debug => 0, eq => <<END, avx512=>1);
abcdefghijklmnop
END
Structured Programming with variables
Structured programming operations driven off variables.
Nasm::X86::Variable::for($limit, $block)
Iterate a block a variable number of times.
Parameter Description
1 $limit Number of times
2 $block Block
Example:
V(limit => 10)->for(sub
{my ($i, $start, $next, $end) = @_;
$i->outNL;
});
ok Assemble(debug => 0, eq => <<END, avx512=>0);
index: .... .... .... ....
index: .... .... .... ...1
index: .... .... .... ...2
index: .... .... .... ...3
index: .... .... .... ...4
index: .... .... .... ...5
index: .... .... .... ...6
index: .... .... .... ...7
index: .... .... .... ...8
index: .... .... .... ...9
END
Operating system
Interacting with the operating system.
Processes
Create and manage processes
Fork()
Fork: create and execute a copy of the current process.
Example:
Fork; # Fork # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Test rax,rax;
IfNz # Parent
Then
{Mov rbx, rax;
WaitPid;
GetPid; # Pid of parent as seen in parent
Mov rcx,rax;
PrintOutRegisterInHex rax, rbx, rcx;
},
Else # Child
{Mov r8,rax;
GetPid; # Child pid as seen in child
Mov r9,rax;
GetPPid; # Parent pid as seen in child
Mov r10,rax;
PrintOutRegisterInHex r8, r9, r10;
};
my $r = Assemble(avx512=>0);
# r8: 0000 0000 0000 0000 #1 Return from fork as seen by child
# r9: 0000 0000 0003 0C63 #2 Pid of child
# r10: 0000 0000 0003 0C60 #3 Pid of parent from child
# rax: 0000 0000 0003 0C63 #4 Return from fork as seen by parent
# rbx: 0000 0000 0003 0C63 #5 Wait for child pid result
# rcx: 0000 0000 0003 0C60 #6 Pid of parent
if ($r =~ m(r8:( 0000){4}.*r9:(.*)\s{5,}r10:(.*)\s{5,}rax:(.*)\s{5,}rbx:(.*)\s{5,}rcx:(.*)\s{2,})s)
{ok $2 eq $4;
ok $2 eq $5;
ok $3 eq $6;
ok $2 gt $6;
}
GetPid()
Get process identifier.
Example:
Fork; # Fork
Test rax,rax;
IfNz # Parent
Then
{Mov rbx, rax;
WaitPid;
GetPid; # Pid of parent as seen in parent # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Mov rcx,rax;
PrintOutRegisterInHex rax, rbx, rcx;
},
Else # Child
{Mov r8,rax;
GetPid; # Child pid as seen in child # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Mov r9,rax;
GetPPid; # Parent pid as seen in child
Mov r10,rax;
PrintOutRegisterInHex r8, r9, r10;
};
my $r = Assemble(avx512=>0);
# r8: 0000 0000 0000 0000 #1 Return from fork as seen by child
# r9: 0000 0000 0003 0C63 #2 Pid of child
# r10: 0000 0000 0003 0C60 #3 Pid of parent from child
# rax: 0000 0000 0003 0C63 #4 Return from fork as seen by parent
# rbx: 0000 0000 0003 0C63 #5 Wait for child pid result
# rcx: 0000 0000 0003 0C60 #6 Pid of parent
if ($r =~ m(r8:( 0000){4}.*r9:(.*)\s{5,}r10:(.*)\s{5,}rax:(.*)\s{5,}rbx:(.*)\s{5,}rcx:(.*)\s{2,})s)
{ok $2 eq $4;
ok $2 eq $5;
ok $3 eq $6;
ok $2 gt $6;
}
GetPidInHex()
Get process identifier in hex as 8 zero terminated bytes in rax.
Example:
GetPidInHex; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Mov r15, rax;
GetPidInHex; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Cmp r15, rax;
IfEq Then {PrintOutStringNL "Same"}, Else {PrintOutStringNL "Diff"};
ok Assemble(debug => 0, eq => <<END, avx512=>0);
Same
END
GetPPid()
Get parent process identifier.
Example:
Fork; # Fork
Test rax,rax;
IfNz # Parent
Then
{Mov rbx, rax;
WaitPid;
GetPid; # Pid of parent as seen in parent
Mov rcx,rax;
PrintOutRegisterInHex rax, rbx, rcx;
},
Else # Child
{Mov r8,rax;
GetPid; # Child pid as seen in child
Mov r9,rax;
GetPPid; # Parent pid as seen in child # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Mov r10,rax;
PrintOutRegisterInHex r8, r9, r10;
};
my $r = Assemble(avx512=>0);
# r8: 0000 0000 0000 0000 #1 Return from fork as seen by child
# r9: 0000 0000 0003 0C63 #2 Pid of child
# r10: 0000 0000 0003 0C60 #3 Pid of parent from child
# rax: 0000 0000 0003 0C63 #4 Return from fork as seen by parent
# rbx: 0000 0000 0003 0C63 #5 Wait for child pid result
# rcx: 0000 0000 0003 0C60 #6 Pid of parent
if ($r =~ m(r8:( 0000){4}.*r9:(.*)\s{5,}r10:(.*)\s{5,}rax:(.*)\s{5,}rbx:(.*)\s{5,}rcx:(.*)\s{2,})s)
{ok $2 eq $4;
ok $2 eq $5;
ok $3 eq $6;
ok $2 gt $6;
}
GetUid()
Get userid of current process.
Example:
if ($homeTest) {
WaitPid()
Wait for the pid in rax to complete.
Example:
Fork; # Fork
Test rax,rax;
IfNz # Parent
Then
{Mov rbx, rax;
WaitPid; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
GetPid; # Pid of parent as seen in parent
Mov rcx,rax;
PrintOutRegisterInHex rax, rbx, rcx;
},
Else # Child
{Mov r8,rax;
GetPid; # Child pid as seen in child
Mov r9,rax;
GetPPid; # Parent pid as seen in child
Mov r10,rax;
PrintOutRegisterInHex r8, r9, r10;
};
my $r = Assemble(avx512=>0);
# r8: 0000 0000 0000 0000 #1 Return from fork as seen by child
# r9: 0000 0000 0003 0C63 #2 Pid of child
# r10: 0000 0000 0003 0C60 #3 Pid of parent from child
# rax: 0000 0000 0003 0C63 #4 Return from fork as seen by parent
# rbx: 0000 0000 0003 0C63 #5 Wait for child pid result
# rcx: 0000 0000 0003 0C60 #6 Pid of parent
if ($r =~ m(r8:( 0000){4}.*r9:(.*)\s{5,}r10:(.*)\s{5,}rax:(.*)\s{5,}rbx:(.*)\s{5,}rcx:(.*)\s{2,})s)
{ok $2 eq $4;
ok $2 eq $5;
ok $3 eq $6;
ok $2 gt $6;
}
ReadTimeStampCounter()
Read the time stamp counter and return the time in nanoseconds in rax.
Example:
for(1..10)
{ReadTimeStampCounter; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex rax;
}
my @s = split /
/, Assemble(avx512=>0);
my @S = sort @s;
is_deeply \@s, \@S;
Memory
Allocate and print memory
PrintMemoryInHex($channel)
Dump memory from the address in rax for the length in rdi on the specified channel. As this method prints in blocks of 8 up to 7 bytes will be missing from the end unless the length is a multiple of 8 .
Parameter Description
1 $channel Channel
PrintErrMemoryInHex()
Dump memory from the address in rax for the length in rdi on stderr.
PrintOutMemoryInHex()
Dump memory from the address in rax for the length in rdi on stdout.
Example:
Mov rax, 0x07654321;
Shl rax, 32;
Or rax, 0x07654321;
PushR rax;
PrintOutRaxInHex;
PrintOutNL;
PrintOutRaxInReverseInHex;
PrintOutNL;
Mov rax, rsp;
Mov rdi, 8;
PrintOutMemoryInHex; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutNL;
PopR rax;
Mov rax, 4096;
PushR rax;
Mov rax, rsp;
Mov rdi, 8;
PrintOutMemoryInHex; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutNL;
PopR rax;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
.765 4321 .765 4321
2143 65.7 2143 65.7
2143 65.7 2143 65.7
..10 .... .... ....
END
PrintErrMemoryInHexNL()
Dump memory from the address in rax for the length in rdi and then print a new line.
PrintOutMemoryInHexNL()
Dump memory from the address in rax for the length in rdi and then print a new line.
Example:
my $N = 256;
my $s = Rb 0..$N-1;
my $a = AllocateMemory K size => $N;
CopyMemory(V(source => $s), $a, K(size => $N));
my $b = AllocateMemory K size => $N;
CopyMemory($a, $b, K size => $N);
$b->setReg(rax);
Mov rdi, $N;
PrintOutMemory_InHexNL;
ok Assemble(debug=>0, eq => <<END, avx512=>0);
__.1 .2.3 .4.5 .6.7 .8.9 .A.B .C.D .E.F 1011 1213 1415 1617 1819 1A1B 1C1D 1E1F 2021 2223 2425 2627 2829 2A2B 2C2D 2E2F 3031 3233 3435 3637 3839 3A3B 3C3D 3E3F 4041 4243 4445 4647 4849 4A4B 4C4D 4E4F 5051 5253 5455 5657 5859 5A5B 5C5D 5E5F 6061 6263 6465 6667 6869 6A6B 6C6D 6E6F 7071 7273 7475 7677 7879 7A7B 7C7D 7E7F 8081 8283 8485 8687 8889 8A8B 8C8D 8E8F 9091 9293 9495 9697 9899 9A9B 9C9D 9E9F A0A1 A2A3 A4A5 A6A7 A8A9 AAAB ACAD AEAF B0B1 B2B3 B4B5 B6B7 B8B9 BABB BCBD BEBF C0C1 C2C3 C4C5 C6C7 C8C9 CACB CCCD CECF D0D1 D2D3 D4D5 D6D7 D8D9 DADB DCDD DEDF E0E1 E2E3 E4E5 E6E7 E8E9 EAEB ECED EEEF F0F1 F2F3 F4F5 F6F7 F8F9 FAFB FCFD FEFF
END
PrintMemory_InHex($channel)
Dump memory from the address in rax for the length in rdi on the specified channel. As this method prints in blocks of 8 up to 7 bytes will be missing from the end unless the length is a multiple of 8 .
Parameter Description
1 $channel Channel
PrintErrMemory_InHex()
Dump memory from the address in rax for the length in rdi on stderr.
PrintOutMemory_InHex()
Dump memory from the address in rax for the length in rdi on stdout.
PrintErrMemory_InHexNL()
Dump memory from the address in rax for the length in rdi and then print a new line.
PrintOutMemory_InHexNL()
Dump memory from the address in rax for the length in rdi and then print a new line.
PrintMemory($channel)
Print the memory addressed by rax for a length of rdi on the specified channel where channel can be a constant number or a register expression using a bound register.
Parameter Description
1 $channel Channel
Example:
if (1)
{my $s = "zzzCreated.data";
my $f = Rs $s;
Mov rax, $f;
OpenWrite;
Mov r15, rax;
Mov rax, $f;
Mov rdi, length $s;
PrintMemory r15; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
CloseFile;
ok Assemble eq=><<END, avx512=>1, mix=> 0, trace=>0;
END
ok -e $s;
unlink $s;
}
if (!$homeTest) {
PrintMemoryNL()
Print the memory addressed by rax for a length of rdi on the specified channel followed by a new line.
PrintErrMemory()
Print the memory addressed by rax for a length of rdi on stderr.
PrintOutMemory()
Print the memory addressed by rax for a length of rdi on stdout.
Example:
Comment "Print a string from memory";
my $s = "Hello World";
Mov rax, Rs($s);
Mov rdi, length $s;
PrintOutMemory; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Exit(0);
ok Assemble(avx512=>0) =~ m(Hello World);
PrintErrMemoryNL()
Print the memory addressed by rax for a length of rdi followed by a new line on stderr.
PrintOutMemoryNL()
Print the memory addressed by rax for a length of rdi followed by a new line on stdout.
Example:
my $s = Rs("Hello World
Hello Skye"); my $l = StringLength(my $t = V string => $s); $t->setReg(rax); $l->setReg(rdi);
PrintOutMemoryNL; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
ok Assemble(debug => 0, eq => <<END, avx512=>0);
Hello World
Hello Skye
END
AllocateMemory($size)
Allocate the variable specified amount of memory via mmap and return its address as a variable.
Parameter Description
1 $size Size as a variable
Example:
my $N = K size => 2048;
my $q = Rs('a'..'p');
my $address = AllocateMemory $N; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Vmovdqu8 xmm0, "[$q]";
$address->setReg(rax);
Vmovdqu8 "[rax]", xmm0;
Mov rdi, 16;
PrintOutMemory;
PrintOutNL;
FreeMemory $address, $N;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
abcdefghijklmnop
END
my $N = K size => 4096; # Size of the initial allocation which should be one or more pages
my $A = AllocateMemory $N; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
ClearMemory($A, $N);
$A->setReg(rax);
Mov rdi, 128;
PrintOutMemory_InHexNL;
FreeMemory $A, $N;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
END
my $N = 256;
my $s = Rb 0..$N-1;
my $a = AllocateMemory K size => $N; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
CopyMemory(V(source => $s), $a, K(size => $N));
my $b = AllocateMemory K size => $N; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
CopyMemory($a, $b, K size => $N);
$b->setReg(rax);
Mov rdi, $N;
PrintOutMemory_InHexNL;
ok Assemble(debug=>0, eq => <<END, avx512=>0);
__.1 .2.3 .4.5 .6.7 .8.9 .A.B .C.D .E.F 1011 1213 1415 1617 1819 1A1B 1C1D 1E1F 2021 2223 2425 2627 2829 2A2B 2C2D 2E2F 3031 3233 3435 3637 3839 3A3B 3C3D 3E3F 4041 4243 4445 4647 4849 4A4B 4C4D 4E4F 5051 5253 5455 5657 5859 5A5B 5C5D 5E5F 6061 6263 6465 6667 6869 6A6B 6C6D 6E6F 7071 7273 7475 7677 7879 7A7B 7C7D 7E7F 8081 8283 8485 8687 8889 8A8B 8C8D 8E8F 9091 9293 9495 9697 9899 9A9B 9C9D 9E9F A0A1 A2A3 A4A5 A6A7 A8A9 AAAB ACAD AEAF B0B1 B2B3 B4B5 B6B7 B8B9 BABB BCBD BEBF C0C1 C2C3 C4C5 C6C7 C8C9 CACB CCCD CECF D0D1 D2D3 D4D5 D6D7 D8D9 DADB DCDD DEDF E0E1 E2E3 E4E5 E6E7 E8E9 EAEB ECED EEEF F0F1 F2F3 F4F5 F6F7 F8F9 FAFB FCFD FEFF
END
FreeMemory($address, $size)
Free memory specified by variables.
Parameter Description
1 $address Variable address of memory
2 $size Variable size of memory
Example:
my $N = K size => 2048;
my $q = Rs('a'..'p');
my $address = AllocateMemory $N;
Vmovdqu8 xmm0, "[$q]";
$address->setReg(rax);
Vmovdqu8 "[rax]", xmm0;
Mov rdi, 16;
PrintOutMemory;
PrintOutNL;
FreeMemory $address, $N; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
ok Assemble(debug => 0, eq => <<END, avx512=>1);
abcdefghijklmnop
END
my $N = K size => 4096; # Size of the initial allocation which should be one or more pages
my $A = AllocateMemory $N;
ClearMemory($A, $N);
$A->setReg(rax);
Mov rdi, 128;
PrintOutMemory_InHexNL;
FreeMemory $A, $N; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
ok Assemble(debug => 0, eq => <<END, avx512=>1);
____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
END
ClearMemory($address, $size)
Clear memory with a variable address and variable length
Parameter Description
1 $address Address of memory as a variable
2 $size Size of memory as a variable
Example:
K(loop => 8+1)->for(sub
{my ($index, $start, $next, $end) = @_;
$index->setReg(15);
Push r15;
});
Mov rax, rsp;
Mov rdi, 8*9;
PrintOutMemory_InHexNL;
ClearMemory(V(address => rax), K(size => 8*9)); # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutMemory_InHexNL;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
.8__ ____ ____ ____ .7__ ____ ____ ____ .6__ ____ ____ ____ .5__ ____ ____ ____ .4__ ____ ____ ____ .3__ ____ ____ ____ .2__ ____ ____ ____ .1__ ____ ____ ____ ____ ____ ____ ____
____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
END
my $N = K size => 4096; # Size of the initial allocation which should be one or more pages
my $A = AllocateMemory $N;
ClearMemory($A, $N); # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
$A->setReg(rax);
Mov rdi, 128;
PrintOutMemory_InHexNL;
FreeMemory $A, $N;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
END
CopyMemory($source, $target, $size)
Copy memory.
Parameter Description
1 $source Source address variable
2 $target Target address variable
3 $size Length variable
Example:
my $s = Rb 0; Rb 1; Rw 2; Rd 3; Rq 4;
my $t = Db 0; Db 1; Dw 2; Dd 3; Dq 4;
Vmovdqu8 xmm0, "[$s]";
Vmovdqu8 xmm1, "[$t]";
PrintOutRegisterInHex xmm0;
PrintOutRegisterInHex xmm1;
Sub rsp, 16;
Mov rax, rsp; # Copy memory, the target is addressed by rax, the length is in rdi, the source is addressed by rsi
Mov rdi, 16;
Mov rsi, $s;
CopyMemory(V(source => rsi), V(target => rax), V size => rdi); # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutMemory_InHexNL;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
xmm0: .... .... .... ...4 .... ...3 ...2 .1..
xmm1: .... .... .... ...4 .... ...3 ...2 .1..
__.1 .2__ .3__ ____ .4__ ____ ____ ____
END
my $N = 256;
my $s = Rb 0..$N-1;
my $a = AllocateMemory K size => $N;
CopyMemory(V(source => $s), $a, K(size => $N)); # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
my $b = AllocateMemory K size => $N;
CopyMemory($a, $b, K size => $N); # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
$b->setReg(rax);
Mov rdi, $N;
PrintOutMemory_InHexNL;
ok Assemble(debug=>0, eq => <<END, avx512=>0);
__.1 .2.3 .4.5 .6.7 .8.9 .A.B .C.D .E.F 1011 1213 1415 1617 1819 1A1B 1C1D 1E1F 2021 2223 2425 2627 2829 2A2B 2C2D 2E2F 3031 3233 3435 3637 3839 3A3B 3C3D 3E3F 4041 4243 4445 4647 4849 4A4B 4C4D 4E4F 5051 5253 5455 5657 5859 5A5B 5C5D 5E5F 6061 6263 6465 6667 6869 6A6B 6C6D 6E6F 7071 7273 7475 7677 7879 7A7B 7C7D 7E7F 8081 8283 8485 8687 8889 8A8B 8C8D 8E8F 9091 9293 9495 9697 9899 9A9B 9C9D 9E9F A0A1 A2A3 A4A5 A6A7 A8A9 AAAB ACAD AEAF B0B1 B2B3 B4B5 B6B7 B8B9 BABB BCBD BEBF C0C1 C2C3 C4C5 C6C7 C8C9 CACB CCCD CECF D0D1 D2D3 D4D5 D6D7 D8D9 DADB DCDD DEDF E0E1 E2E3 E4E5 E6E7 E8E9 EAEB ECED EEEF F0F1 F2F3 F4F5 F6F7 F8F9 FAFB FCFD FEFF
END
CopyMemory64($source, $target, $size)
Copy memory in 64 byte blocks.
Parameter Description
1 $source Source address variable
2 $target Target address variable
3 $size Number of 64 byte blocks to move
Example:
my ($s, $l) =
CopyMemory4K($source, $target, $size)
Copy memory in 4K byte blocks.
Parameter Description
1 $source Source address variable
2 $target Target address variable
3 $size Number of 4K byte blocks to move
Files
Interact with the operating system via files.
OpenRead()
Open a file, whose name is addressed by rax, for read and return the file descriptor in rax.
Example:
Mov rax, Rs($0); # File to read
OpenRead; # Open file # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex rax;
CloseFile; # Close file
PrintOutRegisterInHex rax;
Mov rax, Rs(my $f = "zzzTemporaryFile.txt"); # File to write
OpenWrite; # Open file
CloseFile; # Close file
ok Assemble(debug => 0, eq => <<END, avx512=>0);
rax: .... .... .... ...3
rax: .... .... .... ....
END
ok -e $f; # Created file
unlink $f;
OpenWrite()
Create the file named by the terminated string addressed by rax for write. The file handle will be returned in rax.
Example:
if (1)
{my $s = "zzzCreated.data";
my $f = Rs $s;
Mov rax, $f;
OpenWrite; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Mov r15, rax;
Mov rax, $f;
Mov rdi, length $s;
PrintMemory r15;
CloseFile;
ok Assemble eq=><<END, avx512=>1, mix=> 0, trace=>0;
END
ok -e $s;
unlink $s;
}
Mov rax, Rs($0); # File to read
OpenRead; # Open file
PrintOutRegisterInHex rax;
CloseFile; # Close file
PrintOutRegisterInHex rax;
Mov rax, Rs(my $f = "zzzTemporaryFile.txt"); # File to write
OpenWrite; # Open file # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
CloseFile; # Close file
ok Assemble(debug => 0, eq => <<END, avx512=>0);
rax: .... .... .... ...3
rax: .... .... .... ....
END
ok -e $f; # Created file
unlink $f;
CloseFile()
Close the file whose descriptor is in rax.
Example:
if (1)
{my $s = "zzzCreated.data";
my $f = Rs $s;
Mov rax, $f;
OpenWrite;
Mov r15, rax;
Mov rax, $f;
Mov rdi, length $s;
PrintMemory r15;
CloseFile; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
ok Assemble eq=><<END, avx512=>1, mix=> 0, trace=>0;
END
ok -e $s;
unlink $s;
}
Mov rax, Rs($0); # File to read
OpenRead; # Open file
PrintOutRegisterInHex rax;
CloseFile; # Close file # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex rax;
Mov rax, Rs(my $f = "zzzTemporaryFile.txt"); # File to write
OpenWrite; # Open file
CloseFile; # Close file # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
ok Assemble(debug => 0, eq => <<END, avx512=>0);
rax: .... .... .... ...3
rax: .... .... .... ....
END
ok -e $f; # Created file
unlink $f;
StatSize()
Stat a file whose name is addressed by rax to get its size in rax.
Example:
Mov rax, Rs($0); # File to stat
StatSize; # Stat the file # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex rax;
my $r = Assemble(avx512=>0) =~ s( ) ()gsr;
if ($r =~ m(rax:([0-9a-f]{16}))is) # Compare file size obtained with that from fileSize()
{is_deeply $1, sprintf("%016X", fileSize($0));
}
ReadChar()
Read a character from stdin and return it in rax else return -1 in rax if no character was read.
ReadLine()
Reads up to 8 characters followed by a terminating return and place them into rax.
Example:
my $e = q(readLine);
my $f = writeTempFile("hello
world
");
ReadLine; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRaxAsTextNL;
ReadLine; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRaxAsTextNL;
Assemble keep => $e;
is_deeply scalar(qx(./$e < $f)), <<END;
hello
world
END
unlink $f;
}
#latest:
if (1) {
my $e = q(readInteger);
my $f = writeTempFile("11
22
");
ReadInteger;
Shl rax, 1;
PrintOutRaxInDecNL;
ReadInteger;
Shl rax, 1;
PrintOutRaxInDecNL;
Assemble keep => $e;
is_deeply scalar(qx(./$e < $f)), <<END;
22
44
END
unlink $e, $f;
ReadInteger()
Reads an integer in decimal and returns it in rax.
Example:
my $e = q(readInteger);
my $f = writeTempFile("11
22
");
ReadInteger; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Shl rax, 1;
PrintOutRaxInDecNL;
ReadInteger; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Shl rax, 1;
PrintOutRaxInDecNL;
Assemble keep => $e;
is_deeply scalar(qx(./$e < $f)), <<END;
22
44
END
unlink $e, $f;
ReadFile($File)
Read a file into memory.
Parameter Description
1 $File Variable addressing a zero terminated string naming the file to be read in by mapping it
Example:
if (!$homeTest) {
executeFileViaBash($file)
Execute the file named in a variable
Parameter Description
1 $file File variable
Example:
if (0 and $homeTest) { # Execute the content of an area
unlinkFile($file)
Unlink the named file.
Parameter Description
1 $file File variable
Example:
if (0 and $homeTest) { # Execute the content of an area
Hash functions
Hash functions
Hash()
Hash a string addressed by rax with length held in rdi and return the hash code in r15.
Example:
# Make hash accept parameters at:
Mov rax, "[rbp+24]"; # Address of string as parameter
StringLength(V string => rax)->setReg(rdi); # Length of string to hash
Hash(); # Hash string # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex r15;
my $e = Assemble keep => 'hash'; # Assemble to the specified file name
say STDERR qx($e "");
say STDERR qx($e "a");
ok qx($e "") =~ m(r15: 0000 3F80 0000 3F80); # Test well known hashes
ok qx($e "a") =~ m(r15: 0000 3F80 C000 45B2);
if (0) # Hash various strings # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
{my %r; my %f; my $count = 0;
my $N = RegisterSize zmm0;
if (1) # Fixed blocks
{for my $l(qw(a ab abc abcd), 'a a', 'a a')
{for my $i(1..$N)
{my $t = $l x $i;
last if $N < length $t;
my $s = substr($t.(' ' x $N), 0, $N);
next if $f{$s}++;
my $r = qx($e "$s");
say STDERR "$count $r";
if ($r =~ m(^.*r15:\s*(.*)$)m)
{push $r{$1}->@*, $s;
++$count;
}
}
}
}
if (1) # Variable blocks
{for my $l(qw(a ab abc abcd), '', 'a a', 'a a')
{for my $i(1..$N)
{my $t = $l x $i;
next if $f{$t}++;
my $r = qx($e "$t");
say STDERR "$count $r";
if ($r =~ m(^.*r15:\s*(.*)$)m)
{push $r{$1}->@*, $t;
++$count;
}
}
}
}
for my $r(keys %r)
{delete $r{$r} if $r{$r}->@* < 2;
}
say STDERR dump(\%r);
say STDERR "Keys hashed: ", $count;
confess "Duplicates : ", scalar keys(%r);
}
unlink 'hash';
Unicode
Convert between utf8 and utf32
convert_rax_from_utf32_to_utf8()
Convert a utf32 character held in rax to a utf8 character held in rax
Example:
# $ U+0024 010 0100 00100100 24
# £ U+00A3 000 1010 0011 11000010 10100011 C2 A3
# ह U+0939 0000 1001 0011 1001 11100000 10100100 10111001 E0 A4 B9
# € U+20AC 0010 0000 1010 1100 11100010 10000010 10101100 E2 82 AC
# 한 U+D55C 1101 0101 0101 1100 11101101 10010101 10011100 ED 95 9C
# 𐍈 U+10348 0 0001 0000 0011 0100 1000 11110000 10010000 10001101 10001000 F0 90 8D 88
Mov rax, 0x40; # 0x40
convert_rax_from_utf32_to_utf8; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex rax;
Mov rax, 0x03b1; # 0xCE 0xB1
convert_rax_from_utf32_to_utf8; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex rax;
Mov rax, 0x20ac; # 0xE2 0x82 0xAC;
convert_rax_from_utf32_to_utf8; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex rax;
Mov rax, 0x10348; # 0xf0 0x90 0x8d 0x88
convert_rax_from_utf32_to_utf8; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
PrintOutRegisterInHex rax;
ok Assemble eq => <<END, avx512=>1;
rax: .... .... .... ..40
rax: .... .... .... B1CE
rax: .... .... ..AC 82E2
rax: .... .... 888D 90F0
END
GetNextUtf8CharAsUtf32($in)
Get the next UTF-8 encoded character from the addressed memory and return it as a UTF-32 char.
Parameter Description
1 $in Address of utf8 character as a variable
ConvertUtf8ToUtf32($a8, $s8)
Convert an allocated block string of utf8 to an allocated block of utf32 and return its address and length.
Parameter Description
1 $a8 Utf8 string address variable
2 $s8 Utf8 length variable
Example:
my ($out, $size, $fail);
my $Chars = Rb(0x24, 0xc2, 0xa2, 0xc9, 0x91, 0xE2, 0x82, 0xAC, 0xF0, 0x90, 0x8D, 0x88);
my $chars = V(chars => $Chars);
($out, $size, $fail) = GetNextUtf8CharAsUtf32 $chars+0; # Dollar UTF-8 Encoding: 0x24 UTF-32 Encoding: 0x00000024
$out->out('out1 : ');
$size->outNL(' size : ');
($out, $size, $fail) = GetNextUtf8CharAsUtf32 $chars+1; # Cents UTF-8 Encoding: 0xC2 0xA2 UTF-32 Encoding: 0x000000a2
$out->out('out2 : '); $size->outNL(' size : ');
($out, $size, $fail) = GetNextUtf8CharAsUtf32 $chars+3; # Alpha UTF-8 Encoding: 0xC9 0x91 UTF-32 Encoding: 0x00000251
$out->out('out3 : '); $size->outNL(' size : ');
($out, $size, $fail) = GetNextUtf8CharAsUtf32 $chars+5; # Euro UTF-8 Encoding: 0xE2 0x82 0xAC UTF-32 Encoding: 0x000020AC
$out->out('out4 : '); $size->outNL(' size : ');
($out, $size, $fail) = GetNextUtf8CharAsUtf32 $chars+8; # Gothic Letter Hwair UTF-8 Encoding 0xF0 0x90 0x8D 0x88 UTF-32 Encoding: 0x00010348
$out->out('out5 : '); $size->outNL(' size : ');
my $statement = qq(𝖺
𝑎𝑠𝑠𝑖𝑔𝑛 【【𝖻 𝐩𝐥𝐮𝐬 𝖼】】
AAAAAAAA); # A sample sentence to parse
my $s = K(statement => Rutf8($statement));
my $l = StringLength $s;
my $address = AllocateMemory $l; # Allocate enough memory for a copy of the string
CopyMemory($s, $address, $l);
($out, $size, $fail) = GetNextUtf8CharAsUtf32 $address;
$out->out('outA : '); $size->outNL(' size : ');
($out, $size, $fail) = GetNextUtf8CharAsUtf32 $address+4;
$out->out('outB : '); $size->outNL(' size : ');
($out, $size, $fail) = GetNextUtf8CharAsUtf32 $address+5;
$out->out('outC : '); $size->outNL(' size : ');
($out, $size, $fail) = GetNextUtf8CharAsUtf32 $address+30;
$out->out('outD : '); $size->outNL(' size : ');
($out, $size, $fail) = GetNextUtf8CharAsUtf32 $address+35;
$out->out('outE : '); $size->outNL(' size : ');
$address->printOutMemoryInHexNL($l);
ok Assemble(debug => 0, eq => <<END, avx512=>0);
out1 : .... .... .... ..24 size : .... .... .... ...1
out2 : .... .... .... ..A2 size : .... .... .... ...2
out3 : .... .... .... .251 size : .... .... .... ...2
out4 : .... .... .... 20AC size : .... .... .... ...3
out5 : .... .... ...1 .348 size : .... .... .... ...4
outA : .... .... ...1 D5BA size : .... .... .... ...4
outB : .... .... .... ...A size : .... .... .... ...1
outC : .... .... .... ..20 size : .... .... .... ...1
outD : .... .... .... ..20 size : .... .... .... ...1
outE : .... .... .... ..10 size : .... .... .... ...2
F09D 96BA .A20 F09D 918E F09D 91A0 F09D 91A0 F09D 9196 F09D 9194 F09D 919B 20E3 8090 E380 90F0 9D96 BB20 F09D 90A9 F09D 90A5 F09D 90AE F09D 90AC 20F0 9D96 BCE3 8091 E380 91.A 4141 4141 4141 4141 ....
END
ClassifyInRange($address, $size)
Character classification: classify the utf32 characters in a block of memory of specified length using a range specification held in zmm0, zmm1 formatted in double words with each double word in zmm0 having the classification in the highest 8 bits and with zmm0 and zmm1 having the utf32 character at the start (zmm0) and end (zmm1) of each range in the lowest 18 bits. The classification bits from the first matching range are copied into the high (unused) byte of each utf32 character in the block of memory. The effect is to replace the high order byte of each utf32 character with a classification code saying what type of character we are working.
Parameter Description
1 $address Variable address of utf32 string to classify
2 $size Variable length of utf32 string to classify
ClassifyWithInRange($address, $size)
Bracket classification: Classify the utf32 characters in a block of memory of specified length using a range specification held in zmm0, zmm1 formatted in double words with the classification range in the high byte of each dword in zmm0 and the utf32 character at the start (zmm0) and end (zmm1) of each range in the lower 18 bits of each dword. The classification bits from the position within the first matching range are copied into the high (unused) byte of each utf32 character in the block of memory. With bracket matching this gives us a normalized bracket number.
Parameter Description
1 $address Variable address of utf32 string to classify
2 $size Variable length of utf32 string to classify
ClassifyWithInRangeAndSaveOffset($address, $size)
Alphabetic classification: classify the utf32 characters in a block of memory of specified length using a range specification held in zmm0, zmm1 formatted in double words with the classification code in the highest byte of each double word in zmm0 and the offset of the first element in the range in the highest byte of each dword in zmm1. The lowest 18 bits of each double word in zmm0 and zmm1 contain the utf32 characters marking the start and end of each range. The classification bits from zmm1 for the first matching range are copied into the high byte of each utf32 character in the block of memory. The offset in the range is copied into the lowest byte of each utf32 character in the block of memory. The middle two bytes are cleared. The classification byte is placed in the lowest byte of the utf32 character.
Parameter Description
1 $address Variable address of utf32 string to classify
2 $size Variable length of utf32 string to classify
ClassifyWithInRangeAndSaveWordOffset($address, $size, $classification)
Alphabetic classification: classify the utf32 characters in a block of memory of specified length using a range specification held in zmm0, zmm1, zmm2 formatted in double words. Zmm0 contains the low end of the range, zmm1 the high end and zmm2 contains the range offset in the high word of each Dword and the lexical classification on the lowest byte of each dword. Each utf32 character recognized is replaced by a dword whose upper byte is the lexical classification and whose lowest word is the range offset.
Parameter Description
1 $address Variable address of string of utf32 characters
2 $size Variable size of string in utf32 characters
3 $classification Variable one byte classification code for this range
Nasm::X86::Variable::dClassify($d, $low, $high)
Classify the dword in a variable between ranges held in zmm registers and return the index of the matching range.
Parameter Description
1 $d Variable containing a dword
2 $low Zmm number not 31 holding the low end of each range
3 $high Zmm number not 31 holding the high end of each range
Example:
K(K => Rd(map {32 * $_ } 0..15))->loadZmm(29);
K(K => Rd(map {32 * $_ + 16} 0..15))->loadZmm(30);
V(classify => 20)->dClassify(29, 30)->outNL;
V(classify => 14)->dClassify(29, 30)->outNL;
V(classify => 40)->dClassify(29, 30)->outNL;
ok Assemble eq => <<END, avx512=>1;
point: .... .... .... ....
point: .... .... .... ...1
point: .... .... .... ...2
END
C Strings
C strings are a series of bytes terminated by a zero byte.
StringLength($string)
Length of a zero terminated string.
Parameter Description
1 $string String
Example:
my $s = Rs("Hello World
Hello Skye");
my $l = StringLength(my $t = V string => $s); # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
$t->setReg(rax);
$l->setReg(rdi);
PrintOutMemoryNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
Hello World
Hello Skye
END
StringLength(V string => Rs("abcd"))->outNL; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Assemble(debug => 0, eq => <<END, avx512=>0);
size: .... .... .... ...4
END
Areas
An area is single extensible block of memory which contains other data structures such as strings, arrays, trees within it.
Constructors
Construct an area either in memory or by reading it from a file or by incorporating it into an assembly.
DescribeArea(%options)
Describe a relocatable area.
Parameter Description
1 %options Optional variable addressing the start of the area
CreateArea(%options)
Create an relocatable area and returns its address in rax. We add a chain header so that 64 byte blocks of memory can be freed and reused within the area.
Parameter Description
1 %options Free=>1 adds a free chain.
Example:
my $a = CreateArea; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
$a->q('aa');
$a->outNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
aa
END
my $a = CreateArea; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
my $b = CreateArea; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
$a->q('aa');
$b->q('bb');
$a->out;
PrintOutNL;
$b->out;
PrintOutNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
aa
bb
END
my $a = CreateArea; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
my $b = CreateArea; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
$a->q('aa');
$a->q('AA');
$a->out;
PrintOutNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
aaAA
END
my $a = CreateArea; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
my $b = CreateArea; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
$a->q('aa');
$b->q('bb');
$a->q('AA');
$b->q('BB');
$a->q('aa');
$b->q('bb');
$a->out;
$b->out;
PrintOutNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
aaAAaabbBBbb
END
my $a = CreateArea; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
$a->q('ab');
my $b = CreateArea; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
$b->append($a);
$b->append($a);
$a->append($b);
$b->append($a);
$a->append($b);
$b->append($a);
$b->append($a);
$b->append($a);
$b->append($a);
$a->out; PrintOutNL;
$b->out; PrintOutNL;
my $sa = $a->used; $sa->outNL;
my $sb = $b->used; $sb->outNL;
$a->clear;
my $sA = $a->used; $sA->outNL;
my $sB = $b->used; $sB->outNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
abababababababab
ababababababababababababababababababababababababababababababababababababab
area used up: .... .... .... ..10
area used up: .... .... .... ..4A
area used up: .... .... .... ....
area used up: .... .... .... ..4A
END
ReadArea($file)
Read an area stored in a file into memory and return an area descriptor for the area so created.
Parameter Description
1 $file Name of file to read
loadAreaIntoThing($file, %options)
Load an area into the current assembly and return a descriptor for it.
Parameter Description
1 $file File containing an are written out with write
2 %options Options
Nasm::X86::Area::free($area)
Free an area
Parameter Description
1 $area Area descriptor
Example:
my $a = CreateArea;
$a->q("a" x 255);
$a->used->outNL;
$a->size->outNL;
$a->dump('A');
$a->clear;
$a->used->outNL;
$a->size->outNL;
$a->dump('B');
$a->q("a" x 4095);
$a->used->outNL;
$a->size->outNL;
$a->dump('C');
$a->clear;
$a->used->outNL;
$a->size->outNL;
$a->dump('D');
$a->free;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
area used up: .... .... .... ..FF
size of area: .... .... .... 10..
A
Area Size: 4096 Used: 319
.... .... .... .... | __10 ____ ____ ____ 3F.1 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..80 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..C0 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
area used up: .... .... .... ....
size of area: .... .... .... 10..
B
Area Size: 4096 Used: 64
.... .... .... .... | __10 ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..80 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..C0 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
area used up: .... .... .... .FFF
size of area: .... .... .... 20..
C
Area Size: 8192 Used: 4159
.... .... .... .... | __20 ____ ____ ____ 3F10 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..80 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..C0 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
area used up: .... .... .... ....
size of area: .... .... .... 20..
D
Area Size: 8192 Used: 64
.... .... .... .... | __20 ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..80 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..C0 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
END
Memory
Manage memory controlled by an area.
Nasm::X86::Area::used($area)
Return the currently used size of an area as a variable.
Parameter Description
1 $area Area descriptor
Example:
my $a = CreateArea;
$a->q("a" x 255);
$a->used->outNL;
$a->size->outNL;
$a->dump('A');
$a->clear;
$a->used->outNL;
$a->size->outNL;
$a->dump('B');
$a->q("a" x 4095);
$a->used->outNL;
$a->size->outNL;
$a->dump('C');
$a->clear;
$a->used->outNL;
$a->size->outNL;
$a->dump('D');
$a->free;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
area used up: .... .... .... ..FF
size of area: .... .... .... 10..
A
Area Size: 4096 Used: 319
.... .... .... .... | __10 ____ ____ ____ 3F.1 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..80 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..C0 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
area used up: .... .... .... ....
size of area: .... .... .... 10..
B
Area Size: 4096 Used: 64
.... .... .... .... | __10 ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..80 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..C0 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
area used up: .... .... .... .FFF
size of area: .... .... .... 20..
C
Area Size: 8192 Used: 4159
.... .... .... .... | __20 ____ ____ ____ 3F10 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..80 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..C0 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
area used up: .... .... .... ....
size of area: .... .... .... 20..
D
Area Size: 8192 Used: 64
.... .... .... .... | __20 ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..80 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..C0 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
END
Nasm::X86::Area::size($area)
Get the size of an area as a variable.
Parameter Description
1 $area Area descriptor
Example:
my $a = CreateArea;
$a->q("a" x 255);
$a->used->outNL;
$a->size->outNL;
$a->dump('A');
$a->clear;
$a->used->outNL;
$a->size->outNL;
$a->dump('B');
$a->q("a" x 4095);
$a->used->outNL;
$a->size->outNL;
$a->dump('C');
$a->clear;
$a->used->outNL;
$a->size->outNL;
$a->dump('D');
$a->free;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
area used up: .... .... .... ..FF
size of area: .... .... .... 10..
A
Area Size: 4096 Used: 319
.... .... .... .... | __10 ____ ____ ____ 3F.1 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..80 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..C0 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
area used up: .... .... .... ....
size of area: .... .... .... 10..
B
Area Size: 4096 Used: 64
.... .... .... .... | __10 ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..80 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..C0 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
area used up: .... .... .... .FFF
size of area: .... .... .... 20..
C
Area Size: 8192 Used: 4159
.... .... .... .... | __20 ____ ____ ____ 3F10 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..80 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..C0 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
area used up: .... .... .... ....
size of area: .... .... .... 20..
D
Area Size: 8192 Used: 64
.... .... .... .... | __20 ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..80 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..C0 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
END
Nasm::X86::Area::makeReadOnly($area)
Make an area read only.
Parameter Description
1 $area Area descriptor
Nasm::X86::Area::makeWriteable($area)
Make an area writable.
Parameter Description
1 $area Area descriptor
Alloc/Free
Allocate and free memory in an area, either once only but in variable size blocks or reusably in zmm sized blocks via the free block chain.
Nasm::X86::Area::allocate($area, $size)
Allocate the variable amount of space in the variable addressed area and return the offset of the allocation in the area as a variable.
Parameter Description
1 $area Area descriptor
2 $size Variable amount of allocation
Nasm::X86::Area::allocZmmBlock($area)
Allocate a block to hold a zmm register in the specified area and return the offset of the block as a variable.
Parameter Description
1 $area Area
Example:
my $a = CreateArea;
my $m = $a->allocZmmBlock;
K(K => Rd(1..16))->loadZmm(31);
$a->putZmmBlock ($m, 31);
$a->dump("A");
$a->getZmmBlock ($m, 30);
$a->clearZmmBlock($m);
$a->getZmmBlock ($m, 29);
$a->clearZmmBlock($m);
PrintOutRegisterInHex 31, 30, 29;
ok Assemble eq => <<END, avx512=>1;
A
Area Size: 4096 Used: 128
.... .... .... .... | __10 ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..80 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm29: .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
END
my $a = CreateArea;
K(loop => 3)->for(sub
{my ($i, $start, $next, $end) = @_;
$i->outNL;
my $m1 = $a->allocZmmBlock;
my $m2 = $a->allocZmmBlock;
K(K => Rd(1..16))->loadZmm(31);
K(K => Rd(17..32))->loadZmm(30);
PrintOutRegisterInHex 31, 30;
$a->putZmmBlock($m1, 31);
$a->putZmmBlock($m2, 30);
$a->dump("A");
$a->getZmmBlock($m1, 30);
$a->getZmmBlock($m2, 31);
PrintOutRegisterInHex 31, 30;
$a->clearZmmBlock($m1);
$a->freeZmmBlock($m1);
$a->dump("B");
$a->freeZmmBlock($m2);
$a->dump("C");
});
ok Assemble eq => <<END, avx512=>1;
index: .... .... .... ....
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
A
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
B
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
C
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
index: .... .... .... ...1
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
A
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..80 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
B
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..80 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
C
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
index: .... .... .... ...2
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
A
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
B
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
C
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
END
Nasm::X86::Area::allocZmmBlock3($area)
Allocate three zmm blocks in one go and return their offsets
Parameter Description
1 $area Area
Nasm::X86::Area::freeChainSpace($area)
Count the number of blocks available on the free chain
Parameter Description
1 $area Area descriptor
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K loop => 16;
$N->for(sub {my ($i) = @_; $t->push($i+1)});
$t->size->out("t: ", " ");
$a->used->out("u: ", " ");
$a->freeChainSpace->out("f: ", " ");
$a->size->outNL;
$t->clear;
$t->size->out("t: ", " ");
$a->used->out("u: ", " ");
$a->freeChainSpace->out("f: ", " ");
$a->size->outNL;
$N->for(sub {my ($i) = @_; $t->push($i+1)});
$t->size->out("t: ", " ");
$a->used->out("u: ", " ");
$a->freeChainSpace->out("f: ", " ");
$a->size->outNL;
$t->clear;
$t->size->out("t: ", " ");
$a->used->out("u: ", " ");
$a->freeChainSpace->out("f: ", " ");
$a->size->outNL;
$N->for(sub {my ($i) = @_; $t->push($i+1)});
$t->free;
$a->used->out("Clear tree: u: ");
$a->freeChainSpace->out(" f: ", " ");
$a->size->outNL;
$a->clear;
$a->used->out("Clear area: u: ");
$a->freeChainSpace->out(" f: ", " ");
$a->size->outNL;
ok Assemble eq => <<END, avx512=>1;
t: .... .... .... ..10 u: .... .... .... .280 f: .... .... .... .... size of area: .... .... .... 10..
t: .... .... .... .... u: .... .... .... .280 f: .... .... .... .240 size of area: .... .... .... 10..
t: .... .... .... ..10 u: .... .... .... .280 f: .... .... .... .... size of area: .... .... .... 10..
t: .... .... .... .... u: .... .... .... .280 f: .... .... .... .240 size of area: .... .... .... 10..
Clear tree: u: .... .... .... .280 f: .... .... .... .240 size of area: .... .... .... 10..
Clear area: u: .... .... .... .... f: .... .... .... .... size of area: .... .... .... 10..
END
Yggdrasil
The world tree from which we can address so many other things
Nasm::X86::Yggdrasil::UniqueStrings {K key => 0}(sub Nasm::X86::Yggdrasil::SubroutineOffsets {K key => 1})
A tree of strings that assigns unique numbers to strings
Parameter Description
1 sub Nasm::X86::Yggdrasil::SubroutineOffsets {K key => 1} Translates a string number into the offset of a subroutine in an area
Nasm::X86::Yggdrasil::SubroutineOffsets {K key => 1}(sub Nasm::X86::Yggdrasil::SubroutineDefinitions{K key => 2})
Translates a string number into the offset of a subroutine in an area
Parameter Description
1 sub Nasm::X86::Yggdrasil::SubroutineDefinitions{K key => 2} Maps the unique string number for a subroutine name to the offset in the are that contains the length (as a dword) followed by the string content of the Perl data structure describing the subroutine in question.
Nasm::X86::Yggdrasil::SubroutineDefinitions{K key => 2}(sub Nasm::X86::Yggdrasil::Unisyn::Alphabets {K key => 3})
Maps the unique string number for a subroutine name to the offset in the are that contains the length (as a dword) followed by the string content of the Perl data structure describing the subroutine in question.
Parameter Description
1 sub Nasm::X86::Yggdrasil::Unisyn::Alphabets {K key => 3} Unisyn alphabets
Nasm::X86::Yggdrasil::Unisyn::Alphabets {K key => 3}()
Unisyn alphabets
Nasm::X86::Area::yggdrasil($area)
Return a tree descriptor to the Yggdrasil world tree for an area creating the world tree Yggdrasil if it has not already been created.
Parameter Description
1 $area Area descriptor
Example:
$TraceMode = 1;
my $A = CreateArea;
my $t = $A->checkYggdrasilCreated;
$t->found->outNL;
my $y = $A->yggdrasil;
my $T = $A->checkYggdrasilCreated;
$T->found->outNL;
ok Assemble debug => 0, eq => <<END, avx512=>1, trace=>1;
found: .... .... .... ....
found: .... .... .... ...1
END
my $f = q(zzzArea.data);
if (1) # Create alphabets and write to a file
{my $a = CreateArea;
my $t = Nasm::X86::Unisyn::Lex::LoadAlphabets $a;
$t->find(K key => 0x27e2);
$t->data->outNL;
$a->write(V file => Rs $f);
$a->free;
}
if (2) # Load alphabets from a file
{my $a = ReadArea $f;
my $y = $a->yggdrasil;
my $t = $y->findSubTree(Nasm::X86::Yggdrasil::Unisyn::Alphabets);
$t->find(K key => 0x27e2);
$t->data->outNL;
}
ok Assemble eq=><<END, avx512=>1, mix=> 0, trace=>0;
data: .... .... .... ...8
data: .... .... .... ...8
END
ok -e $f;
is_deeply fileSize($f), 88512;
if (3) # Incorporate alphabets in an an assembly
{my $a = loadAreaIntoThing $f;
my $y = $a->yggdrasil;
my $t = $y->findSubTree(Nasm::X86::Yggdrasil::Unisyn::Alphabets);
$t->find(K key => 0x27e2);
$t->data->outNL;
}
ok Assemble eq=><<END, avx512=>1, mix=> 0, trace=>0;
data: .... .... .... ...8
END
unlink $f;
Areas as Strings
Use the memory supplied by the area as a string - however, in general, this is too slow unless coupled with another slow operation such as executing a command, mapping a file or writing to a file.
Nasm::X86::Area::appendMemory($area, $address, $size)
Append the variable addressed content in memory of variable size to the specified area.
Parameter Description
1 $area Area descriptor
2 $address Variable address of content
3 $size Variable length of content
Nasm::X86::Area::q($area, $string)
Append a constant string to the area.
Parameter Description
1 $area Area descriptor
2 $string String
Nasm::X86::Area::ql($area, $const)
Append a quoted string containing new line characters to the specified area.
Parameter Description
1 $area Area
2 $const Constant
Nasm::X86::Area::char($area, $char)
Append a character expressed as a decimal number to the specified area.
Parameter Description
1 $area Area descriptor
2 $char Number of character to be appended
Nasm::X86::Area::nl($area)
Append a new line to the area addressed by rax.
Parameter Description
1 $area Area descriptor
Nasm::X86::Area::zero($area)
Append a trailing zero to the area addressed by rax.
Parameter Description
1 $area Area descriptor
Nasm::X86::Area::append($target, $source)
Append one area to another.
Parameter Description
1 $target Target area descriptor
2 $source Source area descriptor
Nasm::X86::Area::clear($area)
Clear an area but keep it at the same size.
Parameter Description
1 $area Area descriptor
Example:
my $a = CreateArea;
$a->q("a" x 255);
$a->used->outNL;
$a->size->outNL;
$a->dump('A');
$a->clear;
$a->used->outNL;
$a->size->outNL;
$a->dump('B');
$a->q("a" x 4095);
$a->used->outNL;
$a->size->outNL;
$a->dump('C');
$a->clear;
$a->used->outNL;
$a->size->outNL;
$a->dump('D');
$a->free;
ok Assemble(debug => 0, eq => <<END, avx512=>1);
area used up: .... .... .... ..FF
size of area: .... .... .... 10..
A
Area Size: 4096 Used: 319
.... .... .... .... | __10 ____ ____ ____ 3F.1 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..80 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..C0 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
area used up: .... .... .... ....
size of area: .... .... .... 10..
B
Area Size: 4096 Used: 64
.... .... .... .... | __10 ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..80 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..C0 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
area used up: .... .... .... .FFF
size of area: .... .... .... 20..
C
Area Size: 8192 Used: 4159
.... .... .... .... | __20 ____ ____ ____ 3F10 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..80 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..C0 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
area used up: .... .... .... ....
size of area: .... .... .... 20..
D
Area Size: 8192 Used: 64
.... .... .... .... | __20 ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..80 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
.... .... .... ..C0 | 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161 6161
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K loop => 16;
$N->for(sub {my ($i) = @_; $t->push($i+1)});
$t->size->out("t: ", " ");
$a->used->out("u: ", " ");
$a->freeChainSpace->out("f: ", " ");
$a->size->outNL;
$t->clear;
$t->size->out("t: ", " ");
$a->used->out("u: ", " ");
$a->freeChainSpace->out("f: ", " ");
$a->size->outNL;
$N->for(sub {my ($i) = @_; $t->push($i+1)});
$t->size->out("t: ", " ");
$a->used->out("u: ", " ");
$a->freeChainSpace->out("f: ", " ");
$a->size->outNL;
$t->clear;
$t->size->out("t: ", " ");
$a->used->out("u: ", " ");
$a->freeChainSpace->out("f: ", " ");
$a->size->outNL;
$N->for(sub {my ($i) = @_; $t->push($i+1)});
$t->free;
$a->used->out("Clear tree: u: ");
$a->freeChainSpace->out(" f: ", " ");
$a->size->outNL;
$a->clear;
$a->used->out("Clear area: u: ");
$a->freeChainSpace->out(" f: ", " ");
$a->size->outNL;
ok Assemble eq => <<END, avx512=>1;
t: .... .... .... ..10 u: .... .... .... .280 f: .... .... .... .... size of area: .... .... .... 10..
t: .... .... .... .... u: .... .... .... .280 f: .... .... .... .240 size of area: .... .... .... 10..
t: .... .... .... ..10 u: .... .... .... .280 f: .... .... .... .... size of area: .... .... .... 10..
t: .... .... .... .... u: .... .... .... .280 f: .... .... .... .240 size of area: .... .... .... 10..
Clear tree: u: .... .... .... .280 f: .... .... .... .240 size of area: .... .... .... 10..
Clear area: u: .... .... .... .... f: .... .... .... .... size of area: .... .... .... 10..
END
Nasm::X86::Area::read($area, $file)
Read a file specified by a variable addressed zero terminated string and append its content to the specified area.
Parameter Description
1 $area Area descriptor
2 $file Variable addressing file name
Nasm::X86::Area::write($area, $file)
Write the content of the specified area to a file specified by a zero terminated string.
Parameter Description
1 $area Area descriptor
2 $file Variable addressing file name
Nasm::X86::Area::out($area)
Print the specified area on sysout.
Parameter Description
1 $area Area descriptor
Nasm::X86::Area::outNL($area)
Print the specified area on sysout followed by a new line.
Parameter Description
1 $area Area descriptor
Nasm::X86::Area::printOut($area, $offset, $length)
Print part of the specified area on sysout.
Parameter Description
1 $area Area descriptor
2 $offset Offset
3 $length Length
Nasm::X86::Area::dump($area, $title, $depth)
Dump details of an area.
Parameter Description
1 $area Area descriptor
2 $title Title string
3 $depth Optional variable number of 64 byte blocks to dump
Example:
my $a = CreateArea;
my $m = $a->allocZmmBlock;
K(K => Rd(1..16))->loadZmm(31);
$a->putZmmBlock ($m, 31);
$a->dump("A");
$a->getZmmBlock ($m, 30);
$a->clearZmmBlock($m);
$a->getZmmBlock ($m, 29);
$a->clearZmmBlock($m);
PrintOutRegisterInHex 31, 30, 29;
ok Assemble eq => <<END, avx512=>1;
A
Area Size: 4096 Used: 128
.... .... .... .... | __10 ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..80 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm29: .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
END
my $a = CreateArea;
K(loop => 3)->for(sub
{my ($i, $start, $next, $end) = @_;
$i->outNL;
my $m1 = $a->allocZmmBlock;
my $m2 = $a->allocZmmBlock;
K(K => Rd(1..16))->loadZmm(31);
K(K => Rd(17..32))->loadZmm(30);
PrintOutRegisterInHex 31, 30;
$a->putZmmBlock($m1, 31);
$a->putZmmBlock($m2, 30);
$a->dump("A");
$a->getZmmBlock($m1, 30);
$a->getZmmBlock($m2, 31);
PrintOutRegisterInHex 31, 30;
$a->clearZmmBlock($m1);
$a->freeZmmBlock($m1);
$a->dump("B");
$a->freeZmmBlock($m2);
$a->dump("C");
});
ok Assemble eq => <<END, avx512=>1;
index: .... .... .... ....
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
A
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
B
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
C
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
index: .... .... .... ...1
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
A
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..80 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
B
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..80 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
C
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
index: .... .... .... ...2
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
A
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
B
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
C
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
END
Tree
Tree constructed as sets of blocks in an area.
Constructors
Construct a tree.
Nasm::X86::Area::CreateTree($area, %options)
Create a tree in an area.
Parameter Description
1 $area Area description
2 %options Tree options
Nasm::X86::Tree::describeTree($tree, %options)
Create a description of a tree
Parameter Description
1 $tree Tree descriptor
2 %options {first=>first node of tree if not the existing first node; area=>area used by tree if not the existing area}
Nasm::X86::Tree::position($tree, $first)
Create a new tree description for a tree positioned at the specified location
Parameter Description
1 $tree Tree descriptor
2 $first Offset of tree
Nasm::X86::Tree::reposition($tree, $first)
Reposition an existing tree at the specified location
Parameter Description
1 $tree Tree descriptor
2 $first Offset to reposition on
Nasm::X86::Tree::cloneDescriptor($tree)
Clone the descriptor of a tree to make a new tree descriptor
Parameter Description
1 $tree Tree descriptor
Nasm::X86::Tree::copyDescriptor($target, $source)
Copy the description of one tree into another
Parameter Description
1 $target The target of the copy
2 $source The source of the copy
Nasm::X86::Tree::down($tree)
Use the current find result held in data to position on the referenced subtree at the next level down.
Parameter Description
1 $tree Tree descriptor which has just completed a successful find
Nasm::X86::Tree::cloneAndDown($tree)
Use the current find result held in data to position a new sub tree on the referenced subtree at the next level down.
Parameter Description
1 $tree Tree descriptor which has just completed a successful find
Nasm::X86::Tree::size($tree)
Return in a variable the number of elements currently in the tree.
Parameter Description
1 $tree Tree descriptor
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
$t->put(K(key => 1), V(key => 1)); $t->size->outNL;
$t->put(K(key => 2), K(key => 2)); $t->size->outNL;
$t->put(V(key => 2), V(key => 2)); $t->size->outNL;
$t->put(K(key => 3), K(key => 3)); $t->size->outNL;
$t->put(V(key => 3), V(key => 3)); $t->size->outNL;
$t->put(K(key => 4), K(key => 4)); $t->size->outNL;
$t->put(K(key => 4), K(key => 4)); $t->size->outNL;
$t->put(K(key => 5), K(key => 5)); $t->size->outNL;
$t->put(V(key => 5), V(key => 5)); $t->size->outNL;
$t->put(K(key => 6), K(key => 5)); $t->size->outNL;
$t->put(V(key => 6), V(key => 5)); $t->size->outNL;
$t->put(K(key => 7), K(key => 7)); $t->size->outNL;
$t->put(V(key => 7), V(key => 7)); $t->size->outNL;
$t->put(K(key => 8), K(key => 8)); $t->size->outNL;
$t->put(V(key => 8), V(key => 8)); $t->size->outNL;
$t->put(K(key => 9), K(key => 9)); $t->size->outNL;
$t->put(V(key => 9), V(key => 9)); $t->size->outNL;
$t->put(K(key => 10), K(key => 10)); $t->size->outNL;
$t->put(V(key => 10), V(key => 10)); $t->size->outNL;
$t->put(K(key => 11), K(key => 11)); $t->size->outNL;
$t->put(V(key => 11), V(key => 11)); $t->size->outNL;
$t->put(K(key => 12), K(key => 12)); $t->size->outNL;
$t->put(V(key => 12), V(key => 12)); $t->size->outNL;
$t->put(K(key => 13), K(key => 13)); $t->size->outNL;
$t->put(V(key => 13), V(key => 13)); $t->size->outNL;
$t->put(K(key => 14), K(key => 14)); $t->size->outNL;
$t->put(V(key => 14), V(key => 14)); $t->size->outNL;
$t->put(K(key => 15), K(key => 15)); $t->size->outNL;
$t->put(V(key => 15), V(key => 15)); $t->size->outNL;
$t->put(K(key => 4), K(key => 4));
$t->dump8xx("AAA");
ok Assemble debug => 0, eq => <<END, avx512=>1, trace=>0, mix => 1, clocks=>18177;
size of tree: .... .... .... ...1
size of tree: .... .... .... ...2
size of tree: .... .... .... ...2
size of tree: .... .... .... ...3
size of tree: .... .... .... ...3
size of tree: .... .... .... ...4
size of tree: .... .... .... ...4
size of tree: .... .... .... ...5
size of tree: .... .... .... ...5
size of tree: .... .... .... ...6
size of tree: .... .... .... ...6
size of tree: .... .... .... ...7
size of tree: .... .... .... ...7
size of tree: .... .... .... ...8
size of tree: .... .... .... ...8
size of tree: .... .... .... ...9
size of tree: .... .... .... ...9
size of tree: .... .... .... ...A
size of tree: .... .... .... ...A
size of tree: .... .... .... ...B
size of tree: .... .... .... ...B
size of tree: .... .... .... ...C
size of tree: .... .... .... ...C
size of tree: .... .... .... ...D
size of tree: .... .... .... ...D
size of tree: .... .... .... ...E
size of tree: .... .... .... ...E
size of tree: .... .... .... ...F
size of tree: .... .... .... ...F
AAA
Tree: .... .... .... ..40
At: 200 length: 1, data: 240, nodes: 280, first: 40, root, parent
Index: 0
Keys : 7
Data : 7
Nodes: 80 140
At: 80 length: 6, data: C0, nodes: 100, first: 40, up: 200, leaf
Index: 0 1 2 3 4 5
Keys : 1 2 3 4 5 6
Data : 1 2 3 4 5 5
end
At: 140 length: 8, data: 180, nodes: 1C0, first: 40, up: 200, leaf
Index: 0 1 2 3 4 5 6 7
Keys : 8 9 A B C D E F
Data : 8 9 A B C D E F
end
end
END
Insert
Insert a key into the tree.
Nasm::X86::Tree::put($tree, $key, $data)
Put a variable key and data into a tree. The data could be a tree descriptor to place a sub tree into a tree at the indicated key.
Parameter Description
1 $tree Tree definition
2 $key Key as a variable
3 $data Data as a variable or a tree descriptor
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
$t->put(K(key=>1), K(data=>0x11));
$t->put(K(key=>2), K(data=>0x22));
$t->put(K(key=>3), K(data=>0x33));
$t->put(K(key=>4), K(data=>0x44));
$a->dump("4444", K depth => 11);
$t->dump("4444");
ok Assemble eq => <<END, avx512=>1;
4444
Area Size: 4096 Used: 320
.... .... .... .... | __10 ____ ____ ____ 40.1 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 80__ ____ ____ ____ .4__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ .4__ ____ C0__ ____
.... .... .... ..C0 | 11__ ____ 22__ ____ 33__ ____ 44__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ __.1 ____
.... .... .... .1.. | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 40__ ____
.... .... .... .140 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .180 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .1C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .2.. | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .240 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .280 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
4444
At: 80 length: 4, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3
Keys : 1 2 3 4
Data : 17 34 51 68
end
END
my $a = CreateArea;
my $t = $a->CreateTree;
$t->put(K(key=>1), K(data=>0x11));
$t->put(K(key=>2), K(data=>0x22));
$t->put(K(key=>3), K(data=>0x33));
$t->put(K(key=>4), K(data=>0x44));
$t->put(K(key=>5), K(data=>0x55));
$a->dump("5555", K depth => 11);
ok Assemble eq => <<END, avx512=>1;
5555
Area Size: 4096 Used: 320
.... .... .... .... | __10 ____ ____ ____ 40.1 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 80__ ____ ____ ____ .5__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ .5__ ____ C0__ ____
.... .... .... ..C0 | 11__ ____ 22__ ____ 33__ ____ 44__ ____ 55__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ __.1 ____
.... .... .... .1.. | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 40__ ____
.... .... .... .140 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .180 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .1C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .2.. | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .240 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .280 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
END
my $a = CreateArea;
my $t = $a->CreateTree;
$t->put(K(key=>1), K(data=>0x11));
$t->put(K(key=>2), K(data=>0x22));
$t->put(K(key=>3), K(data=>0x33));
$t->put(K(key=>4), K(data=>0x44));
$t->put(K(key=>5), K(data=>0x55));
$t->put(K(key=>6), K(data=>0x66));
$a->dump("6666", K depth => 14);
ok Assemble eq => <<END, avx512=>1;
6666
Area Size: 4096 Used: 320
.... .... .... .... | __10 ____ ____ ____ 40.1 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 80__ ____ ____ ____ .6__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ .6__ ____ C0__ ____
.... .... .... ..C0 | 11__ ____ 22__ ____ 33__ ____ 44__ ____ 55__ ____ 66__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ __.1 ____
.... .... .... .1.. | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 40__ ____
.... .... .... .140 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .180 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .1C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .2.. | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .240 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .280 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .2C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .3.. | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .340 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
END
my $a = CreateArea;
my $t = $a->CreateTree;
$t->put(K(key=>1), K(data=>0x11));
$t->put(K(key=>2), K(data=>0x22));
$t->put(K(key=>3), K(data=>0x33));
$t->put(K(key=>4), K(data=>0x44));
$t->put(K(key=>5), K(data=>0x55));
$t->put(K(key=>6), K(data=>0x66));
$t->put(K(key=>7), K(data=>0x77));
$a->dump("7777", K depth => 14);
ok Assemble eq => <<END, avx512=>1;
7777
Area Size: 4096 Used: 320
.... .... .... .... | __10 ____ ____ ____ 40.1 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 80__ ____ ____ ____ .7__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ .7__ ____ C0__ ____
.... .... .... ..C0 | 11__ ____ 22__ ____ 33__ ____ 44__ ____ 55__ ____ 66__ ____ 77__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ __.1 ____
.... .... .... .1.. | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 40__ ____
.... .... .... .140 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .180 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .1C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .2.. | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .240 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .280 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .2C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .3.. | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .340 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
END
my $a = CreateArea;
my $t = $a->CreateTree;
$t->put(K(key=>1), K(data=>0x11));
$t->put(K(key=>2), K(data=>0x22));
$t->put(K(key=>3), K(data=>0x33));
$t->put(K(key=>4), K(data=>0x44));
$t->put(K(key=>5), K(data=>0x55));
$t->put(K(key=>6), K(data=>0x66));
$t->put(K(key=>7), K(data=>0x77));
$t->put(K(key=>8), K(data=>0x88));
$t->dump("8888");
ok Assemble eq => <<END, avx512=>1;
8888
At: 80 length: 8, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3 4 5 6 7
Keys : 1 2 3 4 5 6 7 8
Data : 17 34 51 68 85 102 119 136
end
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K count => 128;
$N->for(sub
{my ($index, $start, $next, $end) = @_;
my $l = $N-$index;
$t->put($l, $l * 2);
my $h = $N+$index;
$t->put($h, $h * 2);
});
$t->put(K(zero=>0), K(zero=>0));
$t->printInOrder("AAAA");
PrintOutStringNL 'Indx Found Offset Double Found Offset Quad Found Offset Octo Found Offset *16 Found Offset *32 Found Offset *64 Found Offset *128 Found Offset *256 Found Offset *512';
$N->for(sub
{my ($index, $start, $next, $end) = @_;
my $i = $index;
my $j = $i * 2;
my $k = $j * 2;
my $l = $k * 2;
my $m = $l * 2;
my $n = $m * 2;
my $o = $n * 2;
my $p = $o * 2;
my $q = $p * 2;
$t->find($i); $i->outRightInDec(K width => 4); $t->found->outRightInBin(K width => 8); $t->offset->outRightInHex(K width => 8); $t->data->outRightInDec (K width => 8);
$t->find($j); $t->found->outRightInBin(K width => 8); $t->offset->outRightInHex(K width => 8); $t->data->outRightInDec (K width => 8);
$t->find($k); $t->found->outRightInBin(K width => 8); $t->offset->outRightInHex(K width => 8); $t->data->outRightInDec (K width => 8);
$t->find($l); $t->found->outRightInBin(K width => 8); $t->offset->outRightInHex(K width => 8); $t->data->outRightInDec (K width => 8);
$t->find($m); $t->found->outRightInBin(K width => 8); $t->offset->outRightInHex(K width => 8); $t->data->outRightInDec (K width => 8);
$t->find($n); $t->found->outRightInBin(K width => 8); $t->offset->outRightInHex(K width => 8); $t->data->outRightInDec (K width => 8);
$t->find($o); $t->found->outRightInBin(K width => 8); $t->offset->outRightInHex(K width => 8); $t->data->outRightInDec (K width => 8);
$t->find($p); $t->found->outRightInBin(K width => 8); $t->offset->outRightInHex(K width => 8); $t->data->outRightInDec (K width => 8);
$t->find($q); $t->found->outRightInBin(K width => 8); $t->offset->outRightInHex(K width => 8); $t->data->outRightInDecNL(K width => 8);
});
ok Assemble eq => <<END, avx512=>1;
AAAA 256: 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF
Indx Found Offset Double Found Offset Quad Found Offset Octo Found Offset *16 Found Offset *32 Found Offset *64 Found Offset *128 Found Offset *256 Found Offset *512
0 1 80 0 1 80 0 1 80 0 1 80 0 1 80 0 1 80 0 1 80 0 1 80 0 1 80 0
1 10 80 2 100 80 4 10000 80 800000000 80 16 10 200 32 10 1940 64 100000 11C0 128 10 C80 256 0 0
2 100 80 4 10000 80 800000000 80 16 10 200 32 10 1940 64 100000 11C0 128 10 C80 256 0 0 0 0
3 1000 80 6 1000000 80 12 100 1DC0 24 1 1AC0 48 1000 14C0 96 100 8C0 192 1 1100 384 0 0 0 0
4 10000 80 800000000 80 16 10 200 32 10 1940 64 100000 11C0 128 10 C80 256 0 0 0 0 0 0
5 100000 80 10 1 1DC0 20 1000 1C40 40 100 1640 80 1 D40 160 1000 800 320 0 0 0 0 0 0
6 1000000 80 12 100 1DC0 24 1 1AC0 48 1000 14C0 96 100 8C0 192 1 1100 384 0 0 0 0 0 0
710000000 80 14 10000 1DC0 28 10000 1AC0 56 10000 1340 112 10000 5C0 224 10000 17C0 448 0 0 0 0 0 0
800000000 80 16 10 200 32 10 1940 64 100000 11C0 128 10 C80 256 0 0 0 0 0 0 0 0
9 1 200 18 10 1C40 36 100000 1940 7200000000 200 144 10 500 288 0 0 0 0 0 0 0 0
10 1 1DC0 20 1000 1C40 40 100 1640 80 1 D40 160 1000 800 320 0 0 0 0 0 0 0 0
11 10 1DC0 22 100000 1C40 44 100000 200 88 10 A40 176 100000 B00 352 0 0 0 0 0 0 0 0
12 100 1DC0 24 1 1AC0 48 1000 14C0 96 100 8C0 192 1 1100 384 0 0 0 0 0 0 0 0
13 1000 1DC0 26 100 1AC0 52 1 1340 104 1000 740 208 100 1400 416 0 0 0 0 0 0 0 0
14 10000 1DC0 28 10000 1AC0 56 10000 1340 112 10000 5C0 224 10000 17C0 448 0 0 0 0 0 0 0 0
15 100000 1DC0 30 1000 200 60 10 11C0 120 100000 440 24000000000 1880 480 0 0 0 0 0 0 0 0
16 10 200 32 10 1940 64 100000 11C0 128 10 C80 256 0 0 0 0 0 0 0 0 0 0
17 1 1C40 34 1000 1940 68 100 1040 136 1 380 272 0 0 0 0 0 0 0 0 0 0
18 10 1C40 36 100000 1940 7200000000 200 144 10 500 288 0 0 0 0 0 0 0 0 0 0
19 100 1C40 38 1 1640 76 1000 EC0 152 100 680 304 0 0 0 0 0 0 0 0 0 0
20 1000 1C40 40 100 1640 80 1 D40 160 1000 800 320 0 0 0 0 0 0 0 0 0 0
21 10000 1C40 42 10000 1640 84 10000 D40 168 10000 980 336 0 0 0 0 0 0 0 0 0 0
22 100000 1C40 44 100000 200 88 10 A40 176 100000 B00 352 0 0 0 0 0 0 0 0 0 0
23 100 200 46 10 14C0 92 100000 A40 184 1 1880 368 0 0 0 0 0 0 0 0 0 0
24 1 1AC0 48 1000 14C0 96 100 8C0 192 1 1100 384 0 0 0 0 0 0 0 0 0 0
25 10 1AC0 50 100000 14C0 100 100 1700 200 10 1280 400 0 0 0 0 0 0 0 0 0 0
26 100 1AC0 52 1 1340 104 1000 740 208 100 1400 416 0 0 0 0 0 0 0 0 0 0
27 1000 1AC0 54 100 1340 108 1 5C0 216 1000 1580 432 0 0 0 0 0 0 0 0 0 0
28 10000 1AC0 56 10000 1340 112 10000 5C0 224 10000 17C0 448 0 0 0 0 0 0 0 0 0 0
29 100000 1AC0 5810000000 200 116 10 440 232 100000 1A00 464 0 0 0 0 0 0 0 0 0 0
30 1000 200 60 10 11C0 120 100000 440 24000000000 1880 480 0 0 0 0 0 0 0 0 0 0
31 1 1940 62 1000 11C0 124 100 2C0 248 1 1E80 496 0 0 0 0 0 0 0 0 0 0
32 10 1940 64 100000 11C0 128 10 C80 256 0 0 0 0 0 0 0 0 0 0 0 0
33 100 1940 66 1 1040 132 1000 140 264 0 0 0 0 0 0 0 0 0 0 0 0
34 1000 1940 68 100 1040 136 1 380 272 0 0 0 0 0 0 0 0 0 0 0 0
35 10000 1940 70 10000 1040 140 10000 380 280 0 0 0 0 0 0 0 0 0 0 0 0
36 100000 1940 7200000000 200 144 10 500 288 0 0 0 0 0 0 0 0 0 0 0 0
37 10000 200 74 10 EC0 148 100000 500 296 0 0 0 0 0 0 0 0 0 0 0 0
38 1 1640 76 1000 EC0 152 100 680 304 0 0 0 0 0 0 0 0 0 0 0 0
39 10 1640 78 100000 EC0 156 1000 BC0 312 0 0 0 0 0 0 0 0 0 0 0 0
40 100 1640 80 1 D40 160 1000 800 320 0 0 0 0 0 0 0 0 0 0 0 0
41 1000 1640 82 100 D40 164 1 980 328 0 0 0 0 0 0 0 0 0 0 0 0
42 10000 1640 84 10000 D40 168 10000 980 336 0 0 0 0 0 0 0 0 0 0 0 0
43 100000 1640 86 1 1700 172 10 B00 344 0 0 0 0 0 0 0 0 0 0 0 0
44 100000 200 88 10 A40 176 100000 B00 352 0 0 0 0 0 0 0 0 0 0 0 0
45 1 14C0 90 1000 A40 180 100 E00 360 0 0 0 0 0 0 0 0 0 0 0 0
46 10 14C0 92 100000 A40 184 1 1880 368 0 0 0 0 0 0 0 0 0 0 0 0
47 100 14C0 94 1 8C0 188 1000 F80 376 0 0 0 0 0 0 0 0 0 0 0 0
48 1000 14C0 96 100 8C0 192 1 1100 384 0 0 0 0 0 0 0 0 0 0 0 0
49 10000 14C0 98 10000 8C0 196 10000 1100 392 0 0 0 0 0 0 0 0 0 0 0 0
50 100000 14C0 100 100 1700 200 10 1280 400 0 0 0 0 0 0 0 0 0 0 0 0
51 1000000 200 102 10 740 204 100000 1280 408 0 0 0 0 0 0 0 0 0 0 0 0
52 1 1340 104 1000 740 208 100 1400 416 0 0 0 0 0 0 0 0 0 0 0 0
53 10 1340 106 100000 740 212 10000 1880 424 0 0 0 0 0 0 0 0 0 0 0 0
54 100 1340 108 1 5C0 216 1000 1580 432 0 0 0 0 0 0 0 0 0 0 0 0
55 1000 1340 110 100 5C0 220 1 17C0 440 0 0 0 0 0 0 0 0 0 0 0 0
56 10000 1340 112 10000 5C0 224 10000 17C0 448 0 0 0 0 0 0 0 0 0 0 0 0
57 100000 1340 114 10000 1700 228 10 1A00 456 0 0 0 0 0 0 0 0 0 0 0 0
5810000000 200 116 10 440 232 100000 1A00 464 0 0 0 0 0 0 0 0 0 0 0 0
59 1 11C0 118 1000 440 236 100 1B80 472 0 0 0 0 0 0 0 0 0 0 0 0
60 10 11C0 120 100000 440 24000000000 1880 480 0 0 0 0 0 0 0 0 0 0 0 0
61 100 11C0 122 1 2C0 244 1000 1D00 488 0 0 0 0 0 0 0 0 0 0 0 0
62 1000 11C0 124 100 2C0 248 1 1E80 496 0 0 0 0 0 0 0 0 0 0 0 0
63 10000 11C0 126 10000 2C0 252 10000 1E80 504 0 0 0 0 0 0 0 0 0 0 0 0
64 100000 11C0 128 10 C80 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6500000000 200 130 10 140 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0
66 1 1040 132 1000 140 264 0 0 0 0 0 0 0 0 0 0 0 0 0 0
67 10 1040 134 100000 140 268 0 0 0 0 0 0 0 0 0 0 0 0 0 0
68 100 1040 136 1 380 272 0 0 0 0 0 0 0 0 0 0 0 0 0 0
69 1000 1040 138 100 380 276 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70 10000 1040 140 10000 380 280 0 0 0 0 0 0 0 0 0 0 0 0 0 0
71 100000 1040 142 10 BC0 284 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7200000000 200 144 10 500 288 0 0 0 0 0 0 0 0 0 0 0 0 0 0
73 1 EC0 146 1000 500 292 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74 10 EC0 148 100000 500 296 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75 100 EC0 150 1 680 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0
76 1000 EC0 152 100 680 304 0 0 0 0 0 0 0 0 0 0 0 0 0 0
77 10000 EC0 154 10000 680 308 0 0 0 0 0 0 0 0 0 0 0 0 0 0
78 100000 EC0 156 1000 BC0 312 0 0 0 0 0 0 0 0 0 0 0 0 0 0
79 1 C80 158 10 800 316 0 0 0 0 0 0 0 0 0 0 0 0 0 0
80 1 D40 160 1000 800 320 0 0 0 0 0 0 0 0 0 0 0 0 0 0
81 10 D40 162 100000 800 324 0 0 0 0 0 0 0 0 0 0 0 0 0 0
82 100 D40 164 1 980 328 0 0 0 0 0 0 0 0 0 0 0 0 0 0
83 1000 D40 166 100 980 332 0 0 0 0 0 0 0 0 0 0 0 0 0 0
84 10000 D40 168 10000 980 336 0 0 0 0 0 0 0 0 0 0 0 0 0 0
85 100000 D40 170 100000 BC0 340 0 0 0 0 0 0 0 0 0 0 0 0 0 0
86 1 1700 172 10 B00 344 0 0 0 0 0 0 0 0 0 0 0 0 0 0
87 1 A40 174 1000 B00 348 0 0 0 0 0 0 0 0 0 0 0 0 0 0
88 10 A40 176 100000 B00 352 0 0 0 0 0 0 0 0 0 0 0 0 0 0
89 100 A40 178 1 E00 356 0 0 0 0 0 0 0 0 0 0 0 0 0 0
90 1000 A40 180 100 E00 360 0 0 0 0 0 0 0 0 0 0 0 0 0 0
91 10000 A40 182 10000 E00 364 0 0 0 0 0 0 0 0 0 0 0 0 0 0
92 100000 A40 184 1 1880 368 0 0 0 0 0 0 0 0 0 0 0 0 0 0
93 10 1700 186 10 F80 372 0 0 0 0 0 0 0 0 0 0 0 0 0 0
94 1 8C0 188 1000 F80 376 0 0 0 0 0 0 0 0 0 0 0 0 0 0
95 10 8C0 190 100000 F80 380 0 0 0 0 0 0 0 0 0 0 0 0 0 0
96 100 8C0 192 1 1100 384 0 0 0 0 0 0 0 0 0 0 0 0 0 0
97 1000 8C0 194 100 1100 388 0 0 0 0 0 0 0 0 0 0 0 0 0 0
98 10000 8C0 196 10000 1100 392 0 0 0 0 0 0 0 0 0 0 0 0 0 0
99 100000 8C0 198 100 1880 396 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 100 1700 200 10 1280 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0
101 1 740 202 1000 1280 404 0 0 0 0 0 0 0 0 0 0 0 0 0 0
102 10 740 204 100000 1280 408 0 0 0 0 0 0 0 0 0 0 0 0 0 0
103 100 740 206 1 1400 412 0 0 0 0 0 0 0 0 0 0 0 0 0 0
104 1000 740 208 100 1400 416 0 0 0 0 0 0 0 0 0 0 0 0 0 0
105 10000 740 210 10000 1400 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0
106 100000 740 212 10000 1880 424 0 0 0 0 0 0 0 0 0 0 0 0 0 0
107 1000 1700 214 10 1580 428 0 0 0 0 0 0 0 0 0 0 0 0 0 0
108 1 5C0 216 1000 1580 432 0 0 0 0 0 0 0 0 0 0 0 0 0 0
109 10 5C0 218 100000 1580 436 0 0 0 0 0 0 0 0 0 0 0 0 0 0
110 100 5C0 220 1 17C0 440 0 0 0 0 0 0 0 0 0 0 0 0 0 0
111 1000 5C0 222 100 17C0 444 0 0 0 0 0 0 0 0 0 0 0 0 0 0
112 10000 5C0 224 10000 17C0 448 0 0 0 0 0 0 0 0 0 0 0 0 0 0
113 100000 5C0 226 1000000 1880 452 0 0 0 0 0 0 0 0 0 0 0 0 0 0
114 10000 1700 228 10 1A00 456 0 0 0 0 0 0 0 0 0 0 0 0 0 0
115 1 440 230 1000 1A00 460 0 0 0 0 0 0 0 0 0 0 0 0 0 0
116 10 440 232 100000 1A00 464 0 0 0 0 0 0 0 0 0 0 0 0 0 0
117 100 440 234 1 1B80 468 0 0 0 0 0 0 0 0 0 0 0 0 0 0
118 1000 440 236 100 1B80 472 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 10000 440 238 10000 1B80 476 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 100000 440 24000000000 1880 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 100000 1700 242 10 1D00 484 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 1 2C0 244 1000 1D00 488 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 10 2C0 246 100000 1D00 492 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 100 2C0 248 1 1E80 496 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 1000 2C0 250 100 1E80 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0
126 10000 2C0 252 10000 1E80 504 0 0 0 0 0 0 0 0 0 0 0 0 0 0
127 100000 2C0 254 1000000 1E80 508 0 0 0 0 0 0 0 0 0 0 0 0 0 0
END
my $a = CreateArea;
my $t = $a->CreateTree;
$t->put(K(key => 1), V(key => 1)); $t->size->outNL;
$t->put(K(key => 2), K(key => 2)); $t->size->outNL;
$t->put(V(key => 2), V(key => 2)); $t->size->outNL;
$t->put(K(key => 3), K(key => 3)); $t->size->outNL;
$t->put(V(key => 3), V(key => 3)); $t->size->outNL;
$t->put(K(key => 4), K(key => 4)); $t->size->outNL;
$t->put(K(key => 4), K(key => 4)); $t->size->outNL;
$t->put(K(key => 5), K(key => 5)); $t->size->outNL;
$t->put(V(key => 5), V(key => 5)); $t->size->outNL;
$t->put(K(key => 6), K(key => 5)); $t->size->outNL;
$t->put(V(key => 6), V(key => 5)); $t->size->outNL;
$t->put(K(key => 7), K(key => 7)); $t->size->outNL;
$t->put(V(key => 7), V(key => 7)); $t->size->outNL;
$t->put(K(key => 8), K(key => 8)); $t->size->outNL;
$t->put(V(key => 8), V(key => 8)); $t->size->outNL;
$t->put(K(key => 9), K(key => 9)); $t->size->outNL;
$t->put(V(key => 9), V(key => 9)); $t->size->outNL;
$t->put(K(key => 10), K(key => 10)); $t->size->outNL;
$t->put(V(key => 10), V(key => 10)); $t->size->outNL;
$t->put(K(key => 11), K(key => 11)); $t->size->outNL;
$t->put(V(key => 11), V(key => 11)); $t->size->outNL;
$t->put(K(key => 12), K(key => 12)); $t->size->outNL;
$t->put(V(key => 12), V(key => 12)); $t->size->outNL;
$t->put(K(key => 13), K(key => 13)); $t->size->outNL;
$t->put(V(key => 13), V(key => 13)); $t->size->outNL;
$t->put(K(key => 14), K(key => 14)); $t->size->outNL;
$t->put(V(key => 14), V(key => 14)); $t->size->outNL;
$t->put(K(key => 15), K(key => 15)); $t->size->outNL;
$t->put(V(key => 15), V(key => 15)); $t->size->outNL;
$t->put(K(key => 4), K(key => 4));
$t->dump8xx("AAA");
ok Assemble debug => 0, eq => <<END, avx512=>1, trace=>0, mix => 1, clocks=>18177;
size of tree: .... .... .... ...1
size of tree: .... .... .... ...2
size of tree: .... .... .... ...2
size of tree: .... .... .... ...3
size of tree: .... .... .... ...3
size of tree: .... .... .... ...4
size of tree: .... .... .... ...4
size of tree: .... .... .... ...5
size of tree: .... .... .... ...5
size of tree: .... .... .... ...6
size of tree: .... .... .... ...6
size of tree: .... .... .... ...7
size of tree: .... .... .... ...7
size of tree: .... .... .... ...8
size of tree: .... .... .... ...8
size of tree: .... .... .... ...9
size of tree: .... .... .... ...9
size of tree: .... .... .... ...A
size of tree: .... .... .... ...A
size of tree: .... .... .... ...B
size of tree: .... .... .... ...B
size of tree: .... .... .... ...C
size of tree: .... .... .... ...C
size of tree: .... .... .... ...D
size of tree: .... .... .... ...D
size of tree: .... .... .... ...E
size of tree: .... .... .... ...E
size of tree: .... .... .... ...F
size of tree: .... .... .... ...F
AAA
Tree: .... .... .... ..40
At: 200 length: 1, data: 240, nodes: 280, first: 40, root, parent
Index: 0
Keys : 7
Data : 7
Nodes: 80 140
At: 80 length: 6, data: C0, nodes: 100, first: 40, up: 200, leaf
Index: 0 1 2 3 4 5
Keys : 1 2 3 4 5 6
Data : 1 2 3 4 5 5
end
At: 140 length: 8, data: 180, nodes: 1C0, first: 40, up: 200, leaf
Index: 0 1 2 3 4 5 6 7
Keys : 8 9 A B C D E F
Data : 8 9 A B C D E F
end
end
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K(key => 999);
$N->for(sub
{my ($index, $start, $next, $end) = @_;
$t->put($index, $index);
});
$N->for(sub
{my ($index, $start, $next, $end) = @_;
$t->find($index);
});
ok Assemble eq => <<END, avx512=>1, mix=>1, clocks=>763430;
END
Find
Find a key in the tree. Trees have dword integer keys and so can act as arrays as well.
Nasm::X86::Tree::find($tree, $key)
Find a key in a tree and tests whether the found data is a sub tree. The results are held in the variables "found", "data", "subTree" addressed by the tree descriptor. The key just searched for is held in the key field of the tree descriptor. The point at which it was found is held in found which will be zero if the key was not found.
Parameter Description
1 $tree Tree descriptor
2 $key Key field to search for
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K count => 128;
$N->for(sub
{my ($index, $start, $next, $end) = @_;
my $l = $N-$index;
$t->put($l, $l * 2);
my $h = $N+$index;
$t->put($h, $h * 2);
});
$t->put(K(zero=>0), K(zero=>0));
$t->printInOrder("AAAA");
PrintOutStringNL 'Indx Found Offset Double Found Offset Quad Found Offset Octo Found Offset *16 Found Offset *32 Found Offset *64 Found Offset *128 Found Offset *256 Found Offset *512';
$N->for(sub
{my ($index, $start, $next, $end) = @_;
my $i = $index;
my $j = $i * 2;
my $k = $j * 2;
my $l = $k * 2;
my $m = $l * 2;
my $n = $m * 2;
my $o = $n * 2;
my $p = $o * 2;
my $q = $p * 2;
$t->find($i); $i->outRightInDec(K width => 4); $t->found->outRightInBin(K width => 8); $t->offset->outRightInHex(K width => 8); $t->data->outRightInDec (K width => 8);
$t->find($j); $t->found->outRightInBin(K width => 8); $t->offset->outRightInHex(K width => 8); $t->data->outRightInDec (K width => 8);
$t->find($k); $t->found->outRightInBin(K width => 8); $t->offset->outRightInHex(K width => 8); $t->data->outRightInDec (K width => 8);
$t->find($l); $t->found->outRightInBin(K width => 8); $t->offset->outRightInHex(K width => 8); $t->data->outRightInDec (K width => 8);
$t->find($m); $t->found->outRightInBin(K width => 8); $t->offset->outRightInHex(K width => 8); $t->data->outRightInDec (K width => 8);
$t->find($n); $t->found->outRightInBin(K width => 8); $t->offset->outRightInHex(K width => 8); $t->data->outRightInDec (K width => 8);
$t->find($o); $t->found->outRightInBin(K width => 8); $t->offset->outRightInHex(K width => 8); $t->data->outRightInDec (K width => 8);
$t->find($p); $t->found->outRightInBin(K width => 8); $t->offset->outRightInHex(K width => 8); $t->data->outRightInDec (K width => 8);
$t->find($q); $t->found->outRightInBin(K width => 8); $t->offset->outRightInHex(K width => 8); $t->data->outRightInDecNL(K width => 8);
});
ok Assemble eq => <<END, avx512=>1;
AAAA 256: 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF
Indx Found Offset Double Found Offset Quad Found Offset Octo Found Offset *16 Found Offset *32 Found Offset *64 Found Offset *128 Found Offset *256 Found Offset *512
0 1 80 0 1 80 0 1 80 0 1 80 0 1 80 0 1 80 0 1 80 0 1 80 0 1 80 0
1 10 80 2 100 80 4 10000 80 800000000 80 16 10 200 32 10 1940 64 100000 11C0 128 10 C80 256 0 0
2 100 80 4 10000 80 800000000 80 16 10 200 32 10 1940 64 100000 11C0 128 10 C80 256 0 0 0 0
3 1000 80 6 1000000 80 12 100 1DC0 24 1 1AC0 48 1000 14C0 96 100 8C0 192 1 1100 384 0 0 0 0
4 10000 80 800000000 80 16 10 200 32 10 1940 64 100000 11C0 128 10 C80 256 0 0 0 0 0 0
5 100000 80 10 1 1DC0 20 1000 1C40 40 100 1640 80 1 D40 160 1000 800 320 0 0 0 0 0 0
6 1000000 80 12 100 1DC0 24 1 1AC0 48 1000 14C0 96 100 8C0 192 1 1100 384 0 0 0 0 0 0
710000000 80 14 10000 1DC0 28 10000 1AC0 56 10000 1340 112 10000 5C0 224 10000 17C0 448 0 0 0 0 0 0
800000000 80 16 10 200 32 10 1940 64 100000 11C0 128 10 C80 256 0 0 0 0 0 0 0 0
9 1 200 18 10 1C40 36 100000 1940 7200000000 200 144 10 500 288 0 0 0 0 0 0 0 0
10 1 1DC0 20 1000 1C40 40 100 1640 80 1 D40 160 1000 800 320 0 0 0 0 0 0 0 0
11 10 1DC0 22 100000 1C40 44 100000 200 88 10 A40 176 100000 B00 352 0 0 0 0 0 0 0 0
12 100 1DC0 24 1 1AC0 48 1000 14C0 96 100 8C0 192 1 1100 384 0 0 0 0 0 0 0 0
13 1000 1DC0 26 100 1AC0 52 1 1340 104 1000 740 208 100 1400 416 0 0 0 0 0 0 0 0
14 10000 1DC0 28 10000 1AC0 56 10000 1340 112 10000 5C0 224 10000 17C0 448 0 0 0 0 0 0 0 0
15 100000 1DC0 30 1000 200 60 10 11C0 120 100000 440 24000000000 1880 480 0 0 0 0 0 0 0 0
16 10 200 32 10 1940 64 100000 11C0 128 10 C80 256 0 0 0 0 0 0 0 0 0 0
17 1 1C40 34 1000 1940 68 100 1040 136 1 380 272 0 0 0 0 0 0 0 0 0 0
18 10 1C40 36 100000 1940 7200000000 200 144 10 500 288 0 0 0 0 0 0 0 0 0 0
19 100 1C40 38 1 1640 76 1000 EC0 152 100 680 304 0 0 0 0 0 0 0 0 0 0
20 1000 1C40 40 100 1640 80 1 D40 160 1000 800 320 0 0 0 0 0 0 0 0 0 0
21 10000 1C40 42 10000 1640 84 10000 D40 168 10000 980 336 0 0 0 0 0 0 0 0 0 0
22 100000 1C40 44 100000 200 88 10 A40 176 100000 B00 352 0 0 0 0 0 0 0 0 0 0
23 100 200 46 10 14C0 92 100000 A40 184 1 1880 368 0 0 0 0 0 0 0 0 0 0
24 1 1AC0 48 1000 14C0 96 100 8C0 192 1 1100 384 0 0 0 0 0 0 0 0 0 0
25 10 1AC0 50 100000 14C0 100 100 1700 200 10 1280 400 0 0 0 0 0 0 0 0 0 0
26 100 1AC0 52 1 1340 104 1000 740 208 100 1400 416 0 0 0 0 0 0 0 0 0 0
27 1000 1AC0 54 100 1340 108 1 5C0 216 1000 1580 432 0 0 0 0 0 0 0 0 0 0
28 10000 1AC0 56 10000 1340 112 10000 5C0 224 10000 17C0 448 0 0 0 0 0 0 0 0 0 0
29 100000 1AC0 5810000000 200 116 10 440 232 100000 1A00 464 0 0 0 0 0 0 0 0 0 0
30 1000 200 60 10 11C0 120 100000 440 24000000000 1880 480 0 0 0 0 0 0 0 0 0 0
31 1 1940 62 1000 11C0 124 100 2C0 248 1 1E80 496 0 0 0 0 0 0 0 0 0 0
32 10 1940 64 100000 11C0 128 10 C80 256 0 0 0 0 0 0 0 0 0 0 0 0
33 100 1940 66 1 1040 132 1000 140 264 0 0 0 0 0 0 0 0 0 0 0 0
34 1000 1940 68 100 1040 136 1 380 272 0 0 0 0 0 0 0 0 0 0 0 0
35 10000 1940 70 10000 1040 140 10000 380 280 0 0 0 0 0 0 0 0 0 0 0 0
36 100000 1940 7200000000 200 144 10 500 288 0 0 0 0 0 0 0 0 0 0 0 0
37 10000 200 74 10 EC0 148 100000 500 296 0 0 0 0 0 0 0 0 0 0 0 0
38 1 1640 76 1000 EC0 152 100 680 304 0 0 0 0 0 0 0 0 0 0 0 0
39 10 1640 78 100000 EC0 156 1000 BC0 312 0 0 0 0 0 0 0 0 0 0 0 0
40 100 1640 80 1 D40 160 1000 800 320 0 0 0 0 0 0 0 0 0 0 0 0
41 1000 1640 82 100 D40 164 1 980 328 0 0 0 0 0 0 0 0 0 0 0 0
42 10000 1640 84 10000 D40 168 10000 980 336 0 0 0 0 0 0 0 0 0 0 0 0
43 100000 1640 86 1 1700 172 10 B00 344 0 0 0 0 0 0 0 0 0 0 0 0
44 100000 200 88 10 A40 176 100000 B00 352 0 0 0 0 0 0 0 0 0 0 0 0
45 1 14C0 90 1000 A40 180 100 E00 360 0 0 0 0 0 0 0 0 0 0 0 0
46 10 14C0 92 100000 A40 184 1 1880 368 0 0 0 0 0 0 0 0 0 0 0 0
47 100 14C0 94 1 8C0 188 1000 F80 376 0 0 0 0 0 0 0 0 0 0 0 0
48 1000 14C0 96 100 8C0 192 1 1100 384 0 0 0 0 0 0 0 0 0 0 0 0
49 10000 14C0 98 10000 8C0 196 10000 1100 392 0 0 0 0 0 0 0 0 0 0 0 0
50 100000 14C0 100 100 1700 200 10 1280 400 0 0 0 0 0 0 0 0 0 0 0 0
51 1000000 200 102 10 740 204 100000 1280 408 0 0 0 0 0 0 0 0 0 0 0 0
52 1 1340 104 1000 740 208 100 1400 416 0 0 0 0 0 0 0 0 0 0 0 0
53 10 1340 106 100000 740 212 10000 1880 424 0 0 0 0 0 0 0 0 0 0 0 0
54 100 1340 108 1 5C0 216 1000 1580 432 0 0 0 0 0 0 0 0 0 0 0 0
55 1000 1340 110 100 5C0 220 1 17C0 440 0 0 0 0 0 0 0 0 0 0 0 0
56 10000 1340 112 10000 5C0 224 10000 17C0 448 0 0 0 0 0 0 0 0 0 0 0 0
57 100000 1340 114 10000 1700 228 10 1A00 456 0 0 0 0 0 0 0 0 0 0 0 0
5810000000 200 116 10 440 232 100000 1A00 464 0 0 0 0 0 0 0 0 0 0 0 0
59 1 11C0 118 1000 440 236 100 1B80 472 0 0 0 0 0 0 0 0 0 0 0 0
60 10 11C0 120 100000 440 24000000000 1880 480 0 0 0 0 0 0 0 0 0 0 0 0
61 100 11C0 122 1 2C0 244 1000 1D00 488 0 0 0 0 0 0 0 0 0 0 0 0
62 1000 11C0 124 100 2C0 248 1 1E80 496 0 0 0 0 0 0 0 0 0 0 0 0
63 10000 11C0 126 10000 2C0 252 10000 1E80 504 0 0 0 0 0 0 0 0 0 0 0 0
64 100000 11C0 128 10 C80 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6500000000 200 130 10 140 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0
66 1 1040 132 1000 140 264 0 0 0 0 0 0 0 0 0 0 0 0 0 0
67 10 1040 134 100000 140 268 0 0 0 0 0 0 0 0 0 0 0 0 0 0
68 100 1040 136 1 380 272 0 0 0 0 0 0 0 0 0 0 0 0 0 0
69 1000 1040 138 100 380 276 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70 10000 1040 140 10000 380 280 0 0 0 0 0 0 0 0 0 0 0 0 0 0
71 100000 1040 142 10 BC0 284 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7200000000 200 144 10 500 288 0 0 0 0 0 0 0 0 0 0 0 0 0 0
73 1 EC0 146 1000 500 292 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74 10 EC0 148 100000 500 296 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75 100 EC0 150 1 680 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0
76 1000 EC0 152 100 680 304 0 0 0 0 0 0 0 0 0 0 0 0 0 0
77 10000 EC0 154 10000 680 308 0 0 0 0 0 0 0 0 0 0 0 0 0 0
78 100000 EC0 156 1000 BC0 312 0 0 0 0 0 0 0 0 0 0 0 0 0 0
79 1 C80 158 10 800 316 0 0 0 0 0 0 0 0 0 0 0 0 0 0
80 1 D40 160 1000 800 320 0 0 0 0 0 0 0 0 0 0 0 0 0 0
81 10 D40 162 100000 800 324 0 0 0 0 0 0 0 0 0 0 0 0 0 0
82 100 D40 164 1 980 328 0 0 0 0 0 0 0 0 0 0 0 0 0 0
83 1000 D40 166 100 980 332 0 0 0 0 0 0 0 0 0 0 0 0 0 0
84 10000 D40 168 10000 980 336 0 0 0 0 0 0 0 0 0 0 0 0 0 0
85 100000 D40 170 100000 BC0 340 0 0 0 0 0 0 0 0 0 0 0 0 0 0
86 1 1700 172 10 B00 344 0 0 0 0 0 0 0 0 0 0 0 0 0 0
87 1 A40 174 1000 B00 348 0 0 0 0 0 0 0 0 0 0 0 0 0 0
88 10 A40 176 100000 B00 352 0 0 0 0 0 0 0 0 0 0 0 0 0 0
89 100 A40 178 1 E00 356 0 0 0 0 0 0 0 0 0 0 0 0 0 0
90 1000 A40 180 100 E00 360 0 0 0 0 0 0 0 0 0 0 0 0 0 0
91 10000 A40 182 10000 E00 364 0 0 0 0 0 0 0 0 0 0 0 0 0 0
92 100000 A40 184 1 1880 368 0 0 0 0 0 0 0 0 0 0 0 0 0 0
93 10 1700 186 10 F80 372 0 0 0 0 0 0 0 0 0 0 0 0 0 0
94 1 8C0 188 1000 F80 376 0 0 0 0 0 0 0 0 0 0 0 0 0 0
95 10 8C0 190 100000 F80 380 0 0 0 0 0 0 0 0 0 0 0 0 0 0
96 100 8C0 192 1 1100 384 0 0 0 0 0 0 0 0 0 0 0 0 0 0
97 1000 8C0 194 100 1100 388 0 0 0 0 0 0 0 0 0 0 0 0 0 0
98 10000 8C0 196 10000 1100 392 0 0 0 0 0 0 0 0 0 0 0 0 0 0
99 100000 8C0 198 100 1880 396 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 100 1700 200 10 1280 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0
101 1 740 202 1000 1280 404 0 0 0 0 0 0 0 0 0 0 0 0 0 0
102 10 740 204 100000 1280 408 0 0 0 0 0 0 0 0 0 0 0 0 0 0
103 100 740 206 1 1400 412 0 0 0 0 0 0 0 0 0 0 0 0 0 0
104 1000 740 208 100 1400 416 0 0 0 0 0 0 0 0 0 0 0 0 0 0
105 10000 740 210 10000 1400 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0
106 100000 740 212 10000 1880 424 0 0 0 0 0 0 0 0 0 0 0 0 0 0
107 1000 1700 214 10 1580 428 0 0 0 0 0 0 0 0 0 0 0 0 0 0
108 1 5C0 216 1000 1580 432 0 0 0 0 0 0 0 0 0 0 0 0 0 0
109 10 5C0 218 100000 1580 436 0 0 0 0 0 0 0 0 0 0 0 0 0 0
110 100 5C0 220 1 17C0 440 0 0 0 0 0 0 0 0 0 0 0 0 0 0
111 1000 5C0 222 100 17C0 444 0 0 0 0 0 0 0 0 0 0 0 0 0 0
112 10000 5C0 224 10000 17C0 448 0 0 0 0 0 0 0 0 0 0 0 0 0 0
113 100000 5C0 226 1000000 1880 452 0 0 0 0 0 0 0 0 0 0 0 0 0 0
114 10000 1700 228 10 1A00 456 0 0 0 0 0 0 0 0 0 0 0 0 0 0
115 1 440 230 1000 1A00 460 0 0 0 0 0 0 0 0 0 0 0 0 0 0
116 10 440 232 100000 1A00 464 0 0 0 0 0 0 0 0 0 0 0 0 0 0
117 100 440 234 1 1B80 468 0 0 0 0 0 0 0 0 0 0 0 0 0 0
118 1000 440 236 100 1B80 472 0 0 0 0 0 0 0 0 0 0 0 0 0 0
119 10000 440 238 10000 1B80 476 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 100000 440 24000000000 1880 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0
121 100000 1700 242 10 1D00 484 0 0 0 0 0 0 0 0 0 0 0 0 0 0
122 1 2C0 244 1000 1D00 488 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 10 2C0 246 100000 1D00 492 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124 100 2C0 248 1 1E80 496 0 0 0 0 0 0 0 0 0 0 0 0 0 0
125 1000 2C0 250 100 1E80 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0
126 10000 2C0 252 10000 1E80 504 0 0 0 0 0 0 0 0 0 0 0 0 0 0
127 100000 2C0 254 1000000 1E80 508 0 0 0 0 0 0 0 0 0 0 0 0 0 0
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K(key => 999);
$N->for(sub
{my ($index, $start, $next, $end) = @_;
$t->put($index, $index);
});
$N->for(sub
{my ($index, $start, $next, $end) = @_;
$t->find($index);
});
ok Assemble eq => <<END, avx512=>1, mix=>1, clocks=>763430;
END
Nasm::X86::Tree::findFirst($tree)
Find the first element in a tree and set found|key|data|subTree to show the result
Parameter Description
1 $tree Tree descriptor
Example:
my $N = K(key => 32);
my $a = CreateArea;
my $t = $a->CreateTree;
$N->for(sub
{my ($i, $start, $next, $end) = @_;
$t->put($i, $i);
});
$N->for(sub
{my ($i, $start, $next, $end) = @_;
$t->put($N + $i, $N + $i);
$t->findFirst;
If $t->key != $i,
Then
{PrintOutTraceBack "Reverse queue first failed at: "; $i->outNL;
};
$t->delete($i);
If $t->size != $N,
Then
{PrintOutTraceBack "Reverse queue size failed at: "; $i->outNL;
};
$t->printInOrder("A");
});
ok Assemble eq => <<END, avx512=>1, trace=>2, mix=>1;
A 32: 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20
A 32: 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21
A 32: 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22
A 32: 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23
A 32: 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24
A 32: 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25
A 32: 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26
A 32: 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27
A 32: 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28
A 32: A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29
A 32: B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A
A 32: C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B
A 32: D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C
A 32: E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D
A 32: F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
A 32: 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
A 32: 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30
A 32: 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31
A 32: 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32
A 32: 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33
A 32: 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34
A 32: 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35
A 32: 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36
A 32: 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37
A 32: 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38
A 32: 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39
A 32: 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A
A 32: 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B
A 32: 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C
A 32: 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D
A 32: 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E
A 32: 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
END
Nasm::X86::Tree::findLast($tree)
Find the last key in a tree
Parameter Description
1 $tree Tree descriptor
Example:
my $N = K(key => 32);
my $a = CreateArea;
my $t = $a->CreateTree;
$N->for(sub
{my ($i, $start, $next, $end) = @_;
$t->put($N + $i, $N + $i);
});
$N->for(sub
{my ($i, $start, $next, $end) = @_;
$t->put($N - $i, $N - $i);
$t->findLast;
$t->delete($t->key);
If $t->size != $N - 1,
Then
{PrintOutTraceBack "Queued size failed at: "; $i->outNL;
};
$t->printInOrder("A");
});
ok Assemble eq => <<END, avx512=>1;
A 31: 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E
A 31: 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D
A 31: 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C
A 31: 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B
A 31: 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A
A 31: 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39
A 31: 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38
A 31: 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37
A 31: 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36
A 31: 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35
A 31: 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34
A 31: 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33
A 31: 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32
A 31: 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31
A 31: 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30
A 31: 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
A 31: 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E
A 31: F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D
A 31: E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C
A 31: D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B
A 31: C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A
A 31: B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29
A 31: A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28
A 31: 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27
A 31: 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26
A 31: 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25
A 31: 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24
A 31: 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23
A 31: 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22
A 31: 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21
A 31: 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20
A 31: 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
END
Nasm::X86::Tree::findNext($tree, $key)
Find the next key greater than the one specified.
Parameter Description
1 $tree Tree descriptor
2 $key Key
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K loop => 8;
$N->for(sub
{my ($i) = @_;
$t->put(2*$i, 2*$i);
});
(2*$N)->for(sub
{my ($i) = @_;
$i->outRightInDec(K(key => 4)); PrintOutString " -> ";
$t->findNext($i);
$t->found->out("f: ", " ");
If $t->found > 0, Then {$t->key->out};
PrintOutStringNL '.';
});
ok Assemble eq => <<END, avx512=>1;
0 -> f: .... .... .... ...2 key: .... .... .... ...2.
1 -> f: .... .... .... ...2 key: .... .... .... ...2.
2 -> f: .... .... .... ...4 key: .... .... .... ...4.
3 -> f: .... .... .... ...4 key: .... .... .... ...4.
4 -> f: .... .... .... ...8 key: .... .... .... ...6.
5 -> f: .... .... .... ...8 key: .... .... .... ...6.
6 -> f: .... .... .... ..10 key: .... .... .... ...8.
7 -> f: .... .... .... ..10 key: .... .... .... ...8.
8 -> f: .... .... .... ..20 key: .... .... .... ...A.
9 -> f: .... .... .... ..20 key: .... .... .... ...A.
10 -> f: .... .... .... ..40 key: .... .... .... ...C.
11 -> f: .... .... .... ..40 key: .... .... .... ...C.
12 -> f: .... .... .... ..80 key: .... .... .... ...E.
13 -> f: .... .... .... ..80 key: .... .... .... ...E.
14 -> f: .... .... .... .... .
15 -> f: .... .... .... .... .
END
Nasm::X86::Tree::findPrev($tree, $key)
Find the previous key less than the one specified.
Parameter Description
1 $tree Tree descriptor
2 $key Key
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K loop => 8;
$N->for(sub
{my ($i) = @_;
$t->put(2*$i, 2*$i);
});
(2*$N)->for(sub
{my ($i) = @_;
$i->outRightInDec(K(key => 4)); PrintOutString " -> ";
$t->findPrev($i);
$t->found->out("f: ", " ");
If $t->found > 0, Then {$t->key->out};
PrintOutStringNL '.';
});
ok Assemble eq => <<END, avx512=>1;
0 -> f: .... .... .... .... .
1 -> f: .... .... .... ...1 key: .... .... .... .....
2 -> f: .... .... .... ...1 key: .... .... .... .....
3 -> f: .... .... .... ...2 key: .... .... .... ...2.
4 -> f: .... .... .... ...2 key: .... .... .... ...2.
5 -> f: .... .... .... ...4 key: .... .... .... ...4.
6 -> f: .... .... .... ...4 key: .... .... .... ...4.
7 -> f: .... .... .... ...8 key: .... .... .... ...6.
8 -> f: .... .... .... ...8 key: .... .... .... ...6.
9 -> f: .... .... .... ..10 key: .... .... .... ...8.
10 -> f: .... .... .... ..10 key: .... .... .... ...8.
11 -> f: .... .... .... ..20 key: .... .... .... ...A.
12 -> f: .... .... .... ..20 key: .... .... .... ...A.
13 -> f: .... .... .... ..40 key: .... .... .... ...C.
14 -> f: .... .... .... ..40 key: .... .... .... ...C.
15 -> f: .... .... .... ..80 key: .... .... .... ...E.
END
Nasm::X86::Tree::findSubTree($tree, $key)
Find a key in the specified tree and create a sub tree from the data field if possible
Parameter Description
1 $tree Tree descriptor
2 $key Key as a dword
Nasm::X86::Tree::depth($tree, $node)
Return the depth of a node within a tree.
Parameter Description
1 $tree Tree descriptor
2 $node Node
Delete
Delete a key from the tree
Nasm::X86::Tree::delete($tree, $key)
Find a key in a tree and delete it
Parameter Description
1 $tree Tree descriptor
2 $key Key field to delete
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
$t->put (K(key => 1), K(key => 0x11));
$t->delete(K key => 1);
$t->size->outNL;
ok Assemble eq => <<END, avx512=>1, trace=>0, mix=>0;
size of tree: .... .... .... ....
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $i2 = V k => 2; $t->put($i2, $i2);
my $i3 = V k => 3; $t->put($i3, $i3);
my $i4 = V k => 4; $t->put($i4, $i4);
my $i1 = V k => 1; $t->put($i1, $i1);
$t->size->outRightInDecNL(K width => 4); $t->dump("4"); $t->delete($i4);
$t->size->outRightInDecNL(K width => 4); $t->dump("X"); $t->printInOrder("X");
ok Assemble eq => <<END, avx512=>1;
4
4
At: 80 length: 4, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3
Keys : 1 2 3 4
Data : 1 2 3 4
end
3
X
At: 80 length: 3, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2
Keys : 1 2 3
Data : 1 2 3
end
X 3: 1 2 3
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $i20 = V k => 20; $t->put($i20, $i20);
my $i30 = V k => 30; $t->put($i30, $i30);
my $i40 = V k => 40; $t->put($i40, $i40);
my $i10 = V k => 10; $t->put($i10, $i10);
my $i31 = V k => 31; $t->put($i31, $i31);
my $i32 = V k => 32; $t->put($i32, $i32);
my $i33 = V k => 33; $t->put($i33, $i33);
$t->size->outRightInDecNL(K width => 4); $t->dump("33"); $t->delete($i33);
$t->size->outRightInDecNL(K width => 4); $t->dump("40"); $t->delete($i40);
$t->size->outRightInDecNL(K width => 4); $t->dump("X"); $t->printInOrder("X");
ok Assemble eq => <<END, avx512=>1;
7
33
At: 80 length: 7, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3 4 5 6
Keys : A 14 1E 1F 20 21 28
Data : 10 20 30 31 32 33 40
end
6
40
At: 80 length: 6, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3 4 5
Keys : A 14 1E 1F 20 28
Data : 10 20 30 31 32 40
end
5
X
At: 80 length: 5, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3 4
Keys : A 14 1E 1F 20
Data : 10 20 30 31 32
end
X 5: A 14 1E 1F 20
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $i1 = V k => 0; $t->put($i1, $i1);
my $i2 = V k => 11; $t->put($i2, $i2);
my $i3 = V k => 13; $t->put($i3, $i3);
my $i4 = V k => 15; $t->put($i4, $i4);
$t->size->outRightInDecNL(K width => 4);
$t->dump("1");
$a->dump("AAA", K blocks => 12);
$t->delete($i2);
$t->size->outRightInDecNL(K width => 4); $t->dump("X"); $t->printInOrder("X");
ok Assemble eq => <<END, avx512=>1;
4
1
At: 80 length: 4, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3
Keys : 0 B D F
Data : 0 11 13 15
end
AAA
Area Size: 4096 Used: 320
.... .... .... .... | __10 ____ ____ ____ 40.1 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 80__ ____ ____ ____ .4__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | ____ ____ .B__ ____ .D__ ____ .F__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ .4__ ____ C0__ ____
.... .... .... ..C0 | ____ ____ .B__ ____ .D__ ____ .F__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ __.1 ____
.... .... .... .1.. | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 40__ ____
.... .... .... .140 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .180 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .1C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .2.. | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .240 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .280 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .2C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
3
X
At: 80 length: 3, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2
Keys : 0 D F
Data : 0 13 15
end
X 3: 0 D F
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $i1 = V k => 1; $t->put($i1, $i1);
my $i2 = V k => 2; $t->put($i2, $i2);
my $i3 = V k => 3; $t->put($i3, $i3);
my $i4 = V k => 4; $t->put($i4, $i4);
$t->size->outRightInDecNL(K width => 4); $t->dump("1"); $a->dump("AAA", K blocks => 12); $t->delete($i1);
$t->size->outRightInDecNL(K width => 4); $t->dump("X"); $t->printInOrder("X");
ok Assemble eq => <<END, avx512=>1;
4
1
At: 80 length: 4, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3
Keys : 1 2 3 4
Data : 1 2 3 4
end
AAA
Area Size: 4096 Used: 320
.... .... .... .... | __10 ____ ____ ____ 40.1 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 80__ ____ ____ ____ .4__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ .4__ ____ C0__ ____
.... .... .... ..C0 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ __.1 ____
.... .... .... .1.. | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 40__ ____
.... .... .... .140 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .180 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .1C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .2.. | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .240 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .280 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... .2C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
3
X
At: 80 length: 3, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2
Keys : 2 3 4
Data : 2 3 4
end
X 3: 2 3 4
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $i1 = V k => 1; $t->put($i1, $i1);
my $i2 = V k => 2; $t->put($i2, $i2);
my $i3 = V k => 3; $t->put($i3, $i3);
my $i4 = V k => 4; $t->put($i4, $i4);
$t->size->outRightInDecNL(K width => 4); $t->dump("2"); $t->delete($i2);
$t->size->outRightInDecNL(K width => 4); $t->dump("X"); $t->printInOrder("X");
ok Assemble eq => <<END, avx512=>1;
4
2
At: 80 length: 4, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3
Keys : 1 2 3 4
Data : 1 2 3 4
end
3
X
At: 80 length: 3, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2
Keys : 1 3 4
Data : 1 3 4
end
X 3: 1 3 4
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $i1 = V k => 1; $t->put($i1, $i1);
my $i2 = V k => 2; $t->put($i2, $i2);
my $i3 = V k => 3; $t->put($i3, $i3);
my $i4 = V k => 4; $t->put($i4, $i4);
$t->size->outRightInDecNL(K width => 4); $t->dump("3"); $t->delete($i3);
$t->size->outRightInDecNL(K width => 4); $t->dump("X"); $t->printInOrder("X");
ok Assemble eq => <<END, avx512=>1;
4
3
At: 80 length: 4, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3
Keys : 1 2 3 4
Data : 1 2 3 4
end
3
X
At: 80 length: 3, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2
Keys : 1 2 4
Data : 1 2 4
end
X 3: 1 2 4
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $i1 = V k => 1; $t->put($i1, $i1);
my $i2 = V k => 2; $t->put($i2, $i2);
my $i3 = V k => 3; $t->put($i3, $i3);
my $i4 = V k => 4; $t->put($i4, $i4);
$t->size->outRightInDecNL(K width => 4); $t->dump("4"); $t->delete($i4);
$t->size->outRightInDecNL(K width => 4); $t->dump("X"); $t->printInOrder("X");
ok Assemble eq => <<END, avx512=>1;
4
4
At: 80 length: 4, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3
Keys : 1 2 3 4
Data : 1 2 3 4
end
3
X
At: 80 length: 3, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2
Keys : 1 2 3
Data : 1 2 3
end
X 3: 1 2 3
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $i2 = V k => 2; $t->put($i2, $i2);
my $i1 = V k => 1; $t->put($i1, $i1);
my $i3 = V k => 3; $t->put($i3, $i3);
my $i4 = V k => 4; $t->put($i4, $i4);
$t->size->outRightInDecNL(K width => 4); $t->dump("0"); $t->delete($i2);
$t->size->outRightInDecNL(K width => 4); $t->dump("2"); $t->delete($i3);
$t->size->outRightInDecNL(K width => 4); $t->dump("3"); $t->delete($i4);
$t->size->outRightInDecNL(K width => 4); $t->dump("4"); $t->delete($i1);
$t->size->outRightInDecNL(K width => 4); $t->dump("1");
ok Assemble eq => <<END, avx512=>1;
4
0
At: 80 length: 4, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3
Keys : 1 2 3 4
Data : 1 2 3 4
end
3
2
At: 80 length: 3, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2
Keys : 1 3 4
Data : 1 3 4
end
2
3
At: 80 length: 2, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1
Keys : 1 4
Data : 1 4
end
1
4
At: 80 length: 1, data: C0, nodes: 100, first: 40, root, leaf
Index: 0
Keys : 1
Data : 1
end
0
1
- empty
END
my $a = CreateArea;
my $t = $a->CreateTree;
$t->put( K(k=>1), K(d=>11));
$t->put( K(k=>2), K(d=>22));
$t->put( K(k=>3), K(d=>33));
$t->delete(K k=>1); $t->dump("1");
$t->delete(K k=>3); $t->dump("3");
$t->delete(K k=>2); $t->dump("2");
ok Assemble eq => <<END, avx512=>1;
1
At: 80 length: 2, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1
Keys : 2 3
Data : 22 33
end
3
At: 80 length: 1, data: C0, nodes: 100, first: 40, root, leaf
Index: 0
Keys : 2
Data : 22
end
2
- empty
END
my $a = CreateArea;
my $t = $a->CreateTree;
$t->put( K(k=>1), K(d=>11));
$t->put( K(k=>2), K(d=>22));
$t->put( K(k=>3), K(d=>33));
$t->put( K(k=>4), K(d=>44));
$t->dump("0");
$t->delete(K k=>1);
$t->dump("1");
$t->delete(K k=>2);
$t->dump("2");
$t->delete(K k=>3);
$t->dump("3");
$t->delete(K k=>4);
$t->dump("4");
ok Assemble eq => <<END, avx512=>1;
0
At: 80 length: 4, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3
Keys : 1 2 3 4
Data : 11 22 33 44
end
1
At: 80 length: 3, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2
Keys : 2 3 4
Data : 22 33 44
end
2
At: 80 length: 2, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1
Keys : 3 4
Data : 33 44
end
3
At: 80 length: 1, data: C0, nodes: 100, first: 40, root, leaf
Index: 0
Keys : 4
Data : 44
end
4
- empty
END
my $a = CreateArea;
my $t = $a->CreateTree;
$t->put( K(k=>1), K(d=>11));
$t->put( K(k=>2), K(d=>22));
$t->put( K(k=>3), K(d=>33));
$t->put( K(k=>4), K(d=>44));
$t->dump("0");
$t->delete(K k=>3);
$t->dump("3");
$t->delete(K k=>4);
$t->dump("4");
$t->delete(K k=>2);
$t->dump("2");
$t->delete(K k=>1);
$t->dump("1");
ok Assemble eq => <<END, avx512=>1;
0
At: 80 length: 4, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3
Keys : 1 2 3 4
Data : 11 22 33 44
end
3
At: 80 length: 3, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2
Keys : 1 2 4
Data : 11 22 44
end
4
At: 80 length: 2, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1
Keys : 1 2
Data : 11 22
end
2
At: 80 length: 1, data: C0, nodes: 100, first: 40, root, leaf
Index: 0
Keys : 1
Data : 11
end
1
- empty
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $i1 = V k => 1; $t->put($i1, $i1);
my $i2 = V k => 2; $t->put($i2, $i2);
my $i3 = V k => 3; $t->put($i3, $i3);
my $i4 = V k => 4; $t->put($i4, $i4);
my $i5 = V k => 5; $t->put($i5, $i5);
my $i6 = V k => 6; $t->put($i6, $i6);
my $i7 = V k => 7; $t->put($i7, $i7);
my $i8 = V k => 8; $t->put($i8, $i8);
$t->size->outRightInDecNL(K width => 4); $t->dump("1"); $t->delete($i1);
$t->size->outRightInDecNL(K width => 4); $t->dump("2"); $t->delete($i2);
$t->size->outRightInDecNL(K width => 4); $t->dump("3"); $t->delete($i3);
$t->size->outRightInDecNL(K width => 4); $t->dump("4"); $t->delete($i4);
$t->size->outRightInDecNL(K width => 4); $t->dump("5"); $t->delete($i5);
$t->size->outRightInDecNL(K width => 4); $t->dump("6"); $t->delete($i6);
$t->size->outRightInDecNL(K width => 4); $t->dump("7"); $t->delete($i7);
$t->size->outRightInDecNL(K width => 4); $t->dump("8"); $t->delete($i8);
$t->size->outRightInDecNL(K width => 4);
$t->dump("X");
ok Assemble eq => <<END, avx512=>1;
8
1
At: 80 length: 8, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3 4 5 6 7
Keys : 1 2 3 4 5 6 7 8
Data : 1 2 3 4 5 6 7 8
end
7
2
At: 80 length: 7, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3 4 5 6
Keys : 2 3 4 5 6 7 8
Data : 2 3 4 5 6 7 8
end
6
3
At: 80 length: 6, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3 4 5
Keys : 3 4 5 6 7 8
Data : 3 4 5 6 7 8
end
5
4
At: 80 length: 5, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3 4
Keys : 4 5 6 7 8
Data : 4 5 6 7 8
end
4
5
At: 80 length: 4, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2 3
Keys : 5 6 7 8
Data : 5 6 7 8
end
3
6
At: 80 length: 3, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1 2
Keys : 6 7 8
Data : 6 7 8
end
2
7
At: 80 length: 2, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1
Keys : 7 8
Data : 7 8
end
1
8
At: 80 length: 1, data: C0, nodes: 100, first: 40, root, leaf
Index: 0
Keys : 8
Data : 8
end
0
X
- empty
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K loop => 20;
$N->for(sub # Load tree
{my ($i) = @_;
$t->put($i, $i);
});
$t->size->outNL; $t->printInOrder("AA");
$t->delete(K k => 0); $t->printInOrder(" 0");
$t->delete(K k => 9); $t->printInOrder(" 9");
$t->delete(K k => 1); $t->printInOrder(" 1");
$t->delete(K k => 8); $t->printInOrder(" 8");
$t->delete(K k => 2); $t->printInOrder(" 2");
$t->delete(K k => 7); $t->printInOrder(" 7");
$t->delete(K k => 3); $t->printInOrder(" 3");
$t->delete(K k => 6); $t->printInOrder(" 6");
$t->delete(K k => 4); $t->printInOrder(" 4");
$t->delete(K k => 5); $t->printInOrder(" 5");
$t->delete(K k => 10); $t->printInOrder("10");
$t->delete(K k => 19); $t->printInOrder("19");
$t->delete(K k => 11); $t->printInOrder("11");
$t->delete(K k => 18); $t->printInOrder("18");
$t->delete(K k => 12); $t->printInOrder("12");
$t->delete(K k => 17); $t->printInOrder("17");
$t->delete(K k => 13); $t->printInOrder("13");
$t->delete(K k => 16); $t->printInOrder("16");
$t->delete(K k => 14); $t->printInOrder("14");
$t->delete(K k => 15); $t->printInOrder("15");
ok Assemble eq => <<END, avx512=>1;
size of tree: .... .... .... ..14
AA 20: 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13
0 19: 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13
9 18: 1 2 3 4 5 6 7 8 A B C D E F 10 11 12 13
1 17: 2 3 4 5 6 7 8 A B C D E F 10 11 12 13
8 16: 2 3 4 5 6 7 A B C D E F 10 11 12 13
2 15: 3 4 5 6 7 A B C D E F 10 11 12 13
7 14: 3 4 5 6 A B C D E F 10 11 12 13
3 13: 4 5 6 A B C D E F 10 11 12 13
6 12: 4 5 A B C D E F 10 11 12 13
4 11: 5 A B C D E F 10 11 12 13
5 10: A B C D E F 10 11 12 13
10 9: B C D E F 10 11 12 13
19 8: B C D E F 10 11 12
11 7: C D E F 10 11 12
18 6: C D E F 10 11
12 5: D E F 10 11
17 4: D E F 10
13 3: E F 10
16 2: E F
14 1: F
15- empty
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K loop => 16;
$N->for(sub
{my ($i) = @_;
$t->put($i, $i);
});
$t->printInOrder(" 0"); $t->delete(K k => 0);
$t->printInOrder(" 2"); $t->delete(K k => 2);
$t->printInOrder(" 4"); $t->delete(K k => 4);
$t->printInOrder(" 6"); $t->delete(K k => 6);
$t->printInOrder(" 8"); $t->delete(K k => 8);
$t->printInOrder("10"); $t->delete(K k => 10);
$t->printInOrder("12"); $t->delete(K k => 12);
$t->printInOrder("14"); $t->delete(K k => 14);
$t->printInOrder(" 1"); $t->delete(K k => 1);
$t->printInOrder(" 3"); $t->delete(K k => 3);
$t->printInOrder(" 5"); $t->delete(K k => 5);
$t->printInOrder(" 7"); $t->delete(K k => 7);
$t->printInOrder(" 9"); $t->delete(K k => 9);
$t->printInOrder("11"); $t->delete(K k => 11);
$t->printInOrder("13"); $t->delete(K k => 13);
$t->printInOrder("15"); $t->delete(K k => 15);
$t->printInOrder("XX");
ok Assemble eq => <<END, avx512=>1;
0 16: 0 1 2 3 4 5 6 7 8 9 A B C D E F
2 15: 1 2 3 4 5 6 7 8 9 A B C D E F
4 14: 1 3 4 5 6 7 8 9 A B C D E F
6 13: 1 3 5 6 7 8 9 A B C D E F
8 12: 1 3 5 7 8 9 A B C D E F
10 11: 1 3 5 7 9 A B C D E F
12 10: 1 3 5 7 9 B C D E F
14 9: 1 3 5 7 9 B D E F
1 8: 1 3 5 7 9 B D F
3 7: 3 5 7 9 B D F
5 6: 5 7 9 B D F
7 5: 7 9 B D F
9 4: 9 B D F
11 3: B D F
13 2: D F
15 1: F
XX- empty
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K max => 8;
$N->for(sub # Load tree
{my ($i) = @_;
$t->put( $i, 2 * $i);
$t->put(2 * $N - $i - 1, 2 * ($N - $i));
});
# $t->printInOrder("Full");
($N-1)->for(sub # Delete elements
{my ($i) = @_;
my $n1 = ($N + $i)->clone("1111"); my $n2 = ($N - $i - 1)->clone("2222");
$n1->outNL;
$t->delete($n1);
$t->printInOrder("1111");
$n2->outNL;
$t->delete($n2);
$t->printInOrder("2222");
});
$t->dump("Two:");
$t->size->outRightInDecNL(K width => 4);
ok Assemble eq => <<END, avx512=>1;
1111: .... .... .... ...8
1111 15: 0 1 2 3 4 5 6 7 9 A B C D E F
2222: .... .... .... ...7
2222 14: 0 1 2 3 4 5 6 9 A B C D E F
1111: .... .... .... ...9
1111 13: 0 1 2 3 4 5 6 A B C D E F
2222: .... .... .... ...6
2222 12: 0 1 2 3 4 5 A B C D E F
1111: .... .... .... ...A
1111 11: 0 1 2 3 4 5 B C D E F
2222: .... .... .... ...5
2222 10: 0 1 2 3 4 B C D E F
1111: .... .... .... ...B
1111 9: 0 1 2 3 4 C D E F
2222: .... .... .... ...4
2222 8: 0 1 2 3 C D E F
1111: .... .... .... ...C
1111 7: 0 1 2 3 D E F
2222: .... .... .... ...3
2222 6: 0 1 2 D E F
1111: .... .... .... ...D
1111 5: 0 1 2 E F
2222: .... .... .... ...2
2222 4: 0 1 E F
1111: .... .... .... ...E
1111 3: 0 1 F
2222: .... .... .... ...1
2222 2: 0 F
Two:
At: 80 length: 2, data: C0, nodes: 100, first: 40, root, leaf
Index: 0 1
Keys : 0 F
Data : 0 16
end
2
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K max => 100;
$N->for(sub # Load tree
{my ($index, $start, $next, $end) = @_;
$t->put($index, 2 * $index);
If $t->size != $index + 1,
Then
{PrintOutStringNL "SSSS"; $index->outNL; Exit(0);
};
});
$N->for(sub # Check elements
{my ($i) = @_;
$t->find($i);
If $t->found == 0,
Then
{PrintOutStringNL "AAAA"; $i->outNL; Exit(0);
};
});
$N->for(sub # Delete elements
{my ($i) = @_;
$t->delete($i);
If $t->size != $N - $i - 1,
Then
{PrintOutStringNL "TTTT"; $i->outNL; Exit(0);
};
$N->for(sub # Check elements
{my ($j) = @_;
$t->find($j);
If $t->found == 0,
Then
{If $j > $i,
Then
{PrintOutStringNL "BBBBB"; $j->outNL; Exit(0); # Not deleted yet so it should be findable
};
},
Else
{If $j <= $i,
Then
{PrintOutStringNL "CCCCC"; $j->outNL; Exit(0); # Deleted so should not be findable
};
};
});
});
ok Assemble eq => <<END, avx512=>1;
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K loop => 16;
$N->for(sub
{my ($i) = @_;
$t->put($i, $i);
});
($N/2)->for(sub
{my ($i) = @_;
$t->printInOrder("AAAA");
$t->delete($i * 2);
});
($N/2)->for(sub
{my ($i) = @_;
$t->printInOrder("BBBB");
$t->delete($i * 2 + 1);
});
$t->printInOrder("CCCC");
ok Assemble eq => <<END, avx512=>1;
AAAA 16: 0 1 2 3 4 5 6 7 8 9 A B C D E F
AAAA 15: 1 2 3 4 5 6 7 8 9 A B C D E F
AAAA 14: 1 3 4 5 6 7 8 9 A B C D E F
AAAA 13: 1 3 5 6 7 8 9 A B C D E F
AAAA 12: 1 3 5 7 8 9 A B C D E F
AAAA 11: 1 3 5 7 9 A B C D E F
AAAA 10: 1 3 5 7 9 B C D E F
AAAA 9: 1 3 5 7 9 B D E F
BBBB 8: 1 3 5 7 9 B D F
BBBB 7: 3 5 7 9 B D F
BBBB 6: 5 7 9 B D F
BBBB 5: 7 9 B D F
BBBB 4: 9 B D F
BBBB 3: B D F
BBBB 2: D F
BBBB 1: F
CCCC- empty
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K loop => 36;
$N->for(sub
{my ($i) = @_;
$t->put($i, $i);
});
$t->delete(K 1 => 0); $t->printInOrder(" 0");
$t->delete(K 1 => 5); $t->printInOrder(" 5");
$t->delete(K 1 => 10); $t->printInOrder("10");
$t->delete(K 1 => 15); $t->printInOrder("15");
$t->delete(K 1 => 20); $t->printInOrder("20");
$t->delete(K 1 => 25); $t->printInOrder("25");
$t->delete(K 1 => 30); $t->printInOrder("30");
$t->delete(K 1 => 35); $t->printInOrder("35");
$t->delete(K 1 => 1); $t->printInOrder(" 1");
$t->delete(K 1 => 6); $t->printInOrder(" 6");
$t->delete(K 1 => 11); $t->printInOrder("11");
$t->delete(K 1 => 16); $t->printInOrder("16");
$t->delete(K 1 => 21); $t->printInOrder("21");
$t->delete(K 1 => 26); $t->printInOrder("26");
$t->delete(K 1 => 31); $t->printInOrder("31");
$t->delete(K 1 => 2); $t->printInOrder(" 2");
$t->delete(K 1 => 7); $t->printInOrder(" 7");
$t->delete(K 1 => 12); $t->printInOrder("12");
$t->delete(K 1 => 17); $t->printInOrder("17");
$t->delete(K 1 => 22); $t->printInOrder("22");
$t->delete(K 1 => 27); $t->printInOrder("27");
$t->delete(K 1 => 32); $t->printInOrder("32");
$t->delete(K 1 => 3); $t->printInOrder(" 3");
$t->delete(K 1 => 8); $t->printInOrder(" 8");
$t->delete(K 1 => 13); $t->printInOrder("13");
$t->delete(K 1 => 18); $t->printInOrder("18");
$t->delete(K 1 => 23); $t->printInOrder("23");
$t->delete(K 1 => 28); $t->printInOrder("28");
$t->delete(K 1 => 33); $t->printInOrder("33");
$t->delete(K 1 => 4); $t->printInOrder(" 4");
$t->delete(K 1 => 9); $t->printInOrder(" 9");
$t->delete(K 1 => 14); $t->printInOrder("14");
$t->delete(K 1 => 19); $t->printInOrder("19");
$t->delete(K 1 => 24); $t->printInOrder("24");
$t->delete(K 1 => 29); $t->printInOrder("29");
$t->delete(K 1 => 34); $t->printInOrder("34");
ok Assemble eq => <<END, avx512=>1;
0 35: 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23
5 34: 1 2 3 4 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23
10 33: 1 2 3 4 6 7 8 9 B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23
15 32: 1 2 3 4 6 7 8 9 B C D E 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23
20 31: 1 2 3 4 6 7 8 9 B C D E 10 11 12 13 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23
25 30: 1 2 3 4 6 7 8 9 B C D E 10 11 12 13 15 16 17 18 1A 1B 1C 1D 1E 1F 20 21 22 23
30 29: 1 2 3 4 6 7 8 9 B C D E 10 11 12 13 15 16 17 18 1A 1B 1C 1D 1F 20 21 22 23
35 28: 1 2 3 4 6 7 8 9 B C D E 10 11 12 13 15 16 17 18 1A 1B 1C 1D 1F 20 21 22
1 27: 2 3 4 6 7 8 9 B C D E 10 11 12 13 15 16 17 18 1A 1B 1C 1D 1F 20 21 22
6 26: 2 3 4 7 8 9 B C D E 10 11 12 13 15 16 17 18 1A 1B 1C 1D 1F 20 21 22
11 25: 2 3 4 7 8 9 C D E 10 11 12 13 15 16 17 18 1A 1B 1C 1D 1F 20 21 22
16 24: 2 3 4 7 8 9 C D E 11 12 13 15 16 17 18 1A 1B 1C 1D 1F 20 21 22
21 23: 2 3 4 7 8 9 C D E 11 12 13 16 17 18 1A 1B 1C 1D 1F 20 21 22
26 22: 2 3 4 7 8 9 C D E 11 12 13 16 17 18 1B 1C 1D 1F 20 21 22
31 21: 2 3 4 7 8 9 C D E 11 12 13 16 17 18 1B 1C 1D 20 21 22
2 20: 3 4 7 8 9 C D E 11 12 13 16 17 18 1B 1C 1D 20 21 22
7 19: 3 4 8 9 C D E 11 12 13 16 17 18 1B 1C 1D 20 21 22
12 18: 3 4 8 9 D E 11 12 13 16 17 18 1B 1C 1D 20 21 22
17 17: 3 4 8 9 D E 12 13 16 17 18 1B 1C 1D 20 21 22
22 16: 3 4 8 9 D E 12 13 17 18 1B 1C 1D 20 21 22
27 15: 3 4 8 9 D E 12 13 17 18 1C 1D 20 21 22
32 14: 3 4 8 9 D E 12 13 17 18 1C 1D 21 22
3 13: 4 8 9 D E 12 13 17 18 1C 1D 21 22
8 12: 4 9 D E 12 13 17 18 1C 1D 21 22
13 11: 4 9 E 12 13 17 18 1C 1D 21 22
18 10: 4 9 E 13 17 18 1C 1D 21 22
23 9: 4 9 E 13 18 1C 1D 21 22
28 8: 4 9 E 13 18 1D 21 22
33 7: 4 9 E 13 18 1D 22
4 6: 9 E 13 18 1D 22
9 5: E 13 18 1D 22
14 4: 13 18 1D 22
19 3: 18 1D 22
24 2: 1D 22
29 1: 22
34- empty
END
Nasm::X86::Tree::clear($tree)
Delete everything in the tree recording the memory so liberated to the free chain for reuse by other trees.
Parameter Description
1 $tree Tree
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K loop => 16;
$N->for(sub {my ($i) = @_; $t->push($i+1)});
$t->size->out("t: ", " ");
$a->used->out("u: ", " ");
$a->freeChainSpace->out("f: ", " ");
$a->size->outNL;
$t->clear;
$t->size->out("t: ", " ");
$a->used->out("u: ", " ");
$a->freeChainSpace->out("f: ", " ");
$a->size->outNL;
$N->for(sub {my ($i) = @_; $t->push($i+1)});
$t->size->out("t: ", " ");
$a->used->out("u: ", " ");
$a->freeChainSpace->out("f: ", " ");
$a->size->outNL;
$t->clear;
$t->size->out("t: ", " ");
$a->used->out("u: ", " ");
$a->freeChainSpace->out("f: ", " ");
$a->size->outNL;
$N->for(sub {my ($i) = @_; $t->push($i+1)});
$t->free;
$a->used->out("Clear tree: u: ");
$a->freeChainSpace->out(" f: ", " ");
$a->size->outNL;
$a->clear;
$a->used->out("Clear area: u: ");
$a->freeChainSpace->out(" f: ", " ");
$a->size->outNL;
ok Assemble eq => <<END, avx512=>1;
t: .... .... .... ..10 u: .... .... .... .280 f: .... .... .... .... size of area: .... .... .... 10..
t: .... .... .... .... u: .... .... .... .280 f: .... .... .... .240 size of area: .... .... .... 10..
t: .... .... .... ..10 u: .... .... .... .280 f: .... .... .... .... size of area: .... .... .... 10..
t: .... .... .... .... u: .... .... .... .280 f: .... .... .... .240 size of area: .... .... .... 10..
Clear tree: u: .... .... .... .280 f: .... .... .... .240 size of area: .... .... .... 10..
Clear area: u: .... .... .... .... f: .... .... .... .... size of area: .... .... .... 10..
END
Nasm::X86::Tree::free($tree)
Free all the memory used by a tree
Parameter Description
1 $tree Tree
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K loop => 16;
$N->for(sub {my ($i) = @_; $t->push($i+1)});
$t->size->out("t: ", " ");
$a->used->out("u: ", " ");
$a->freeChainSpace->out("f: ", " ");
$a->size->outNL;
$t->clear;
$t->size->out("t: ", " ");
$a->used->out("u: ", " ");
$a->freeChainSpace->out("f: ", " ");
$a->size->outNL;
$N->for(sub {my ($i) = @_; $t->push($i+1)});
$t->size->out("t: ", " ");
$a->used->out("u: ", " ");
$a->freeChainSpace->out("f: ", " ");
$a->size->outNL;
$t->clear;
$t->size->out("t: ", " ");
$a->used->out("u: ", " ");
$a->freeChainSpace->out("f: ", " ");
$a->size->outNL;
$N->for(sub {my ($i) = @_; $t->push($i+1)});
$t->free;
$a->used->out("Clear tree: u: ");
$a->freeChainSpace->out(" f: ", " ");
$a->size->outNL;
$a->clear;
$a->used->out("Clear area: u: ");
$a->freeChainSpace->out(" f: ", " ");
$a->size->outNL;
ok Assemble eq => <<END, avx512=>1;
t: .... .... .... ..10 u: .... .... .... .280 f: .... .... .... .... size of area: .... .... .... 10..
t: .... .... .... .... u: .... .... .... .280 f: .... .... .... .240 size of area: .... .... .... 10..
t: .... .... .... ..10 u: .... .... .... .280 f: .... .... .... .... size of area: .... .... .... 10..
t: .... .... .... .... u: .... .... .... .280 f: .... .... .... .240 size of area: .... .... .... 10..
Clear tree: u: .... .... .... .280 f: .... .... .... .240 size of area: .... .... .... 10..
Clear area: u: .... .... .... .... f: .... .... .... .... size of area: .... .... .... 10..
END
Iteration
Iterate through a tree non recursively
Nasm::X86::Tree::by($tree, $block)
Call the specified block with each element of the specified tree in ascending order.
Parameter Description
1 $tree Tree descriptor
2 $block Block to execute
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K loop => 16;
$N->for(sub
{my ($i) = @_;
$t->put($i, 2 * $i);
});
$t->by(sub
{my ($tree, $start, $next, $end) = @_;
$tree->key->out(""); $tree->data->outNL(" ");
});
ok Assemble eq => <<END, avx512=>1;
.... .... .... .... .... .... .... ....
.... .... .... ...1 .... .... .... ...2
.... .... .... ...2 .... .... .... ...4
.... .... .... ...3 .... .... .... ...6
.... .... .... ...4 .... .... .... ...8
.... .... .... ...5 .... .... .... ...A
.... .... .... ...6 .... .... .... ...C
.... .... .... ...7 .... .... .... ...E
.... .... .... ...8 .... .... .... ..10
.... .... .... ...9 .... .... .... ..12
.... .... .... ...A .... .... .... ..14
.... .... .... ...B .... .... .... ..16
.... .... .... ...C .... .... .... ..18
.... .... .... ...D .... .... .... ..1A
.... .... .... ...E .... .... .... ..1C
.... .... .... ...F .... .... .... ..1E
END
Nasm::X86::Tree::yb($tree, $block)
Call the specified block with each element of the specified tree in descending order.
Parameter Description
1 $tree Tree descriptor
2 $block Block to execute
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K loop => 16;
$N->for(sub
{my ($i) = @_;
$t->put($i, 2* $i);
});
$t->yb(sub
{my ($tree, $start, $prev, $end) = @_;
$tree->key->out(""); $tree->data->outNL(" ");
});
ok Assemble eq => <<END, avx512=>1;
.... .... .... ...F .... .... .... ..1E
.... .... .... ...E .... .... .... ..1C
.... .... .... ...D .... .... .... ..1A
.... .... .... ...C .... .... .... ..18
.... .... .... ...B .... .... .... ..16
.... .... .... ...A .... .... .... ..14
.... .... .... ...9 .... .... .... ..12
.... .... .... ...8 .... .... .... ..10
.... .... .... ...7 .... .... .... ...E
.... .... .... ...6 .... .... .... ...C
.... .... .... ...5 .... .... .... ...A
.... .... .... ...4 .... .... .... ...8
.... .... .... ...3 .... .... .... ...6
.... .... .... ...2 .... .... .... ...4
.... .... .... ...1 .... .... .... ...2
.... .... .... .... .... .... .... ....
END
Push and Pop
Use a tree as a stack: Push elements on to a tree with the next available key; Pop the last element in a tree.
Nasm::X86::Tree::peek($tree, $back)
Peek at the element the specified distance back from the top of the stack and return its value in data and found status in found in the tree descriptor.
Parameter Description
1 $tree Tree descriptor
2 $back How far back to go with 1 being the top
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K loop => 16;
$N->for(sub
{my ($i) = @_;
$t->push($i);
});
$t->peek(K key => 1)->data ->outNL;
$t->peek(K key => 2)->data ->outNL;
$t->peek(K key => 3)->found->outNL;
$t->peek(2 * $N )->found->outNL;
$t->size->outNL;
$t->get(K(key => 8)); $t->found->out("f: ", " "); $t->key->out("i: ", " "); $t->data->outNL;
$N->for(sub
{my ($i) = @_;
$t->pop; $t->found->out("f: ", " "); $t->key->out("i: ", " "); $t->data->outNL;
});
$t->pop; $t->found->outNL("f: ");
ok Assemble eq => <<END, avx512=>1;
data: .... .... .... ...F
data: .... .... .... ...E
found: .... .... .... ..40
found: .... .... .... ....
size of tree: .... .... .... ..10
f: .... .... .... ...2 i: .... .... .... ...8 data: .... .... .... ...8
f: .... .... .... ...1 i: .... .... .... ...F data: .... .... .... ...F
f: .... .... .... ...1 i: .... .... .... ...E data: .... .... .... ...E
f: .... .... .... ...1 i: .... .... .... ...D data: .... .... .... ...D
f: .... .... .... ...1 i: .... .... .... ...C data: .... .... .... ...C
f: .... .... .... ...1 i: .... .... .... ...B data: .... .... .... ...B
f: .... .... .... ...1 i: .... .... .... ...A data: .... .... .... ...A
f: .... .... .... ...1 i: .... .... .... ...9 data: .... .... .... ...9
f: .... .... .... ...1 i: .... .... .... ...8 data: .... .... .... ...8
f: .... .... .... ...1 i: .... .... .... ...7 data: .... .... .... ...7
f: .... .... .... ...1 i: .... .... .... ...6 data: .... .... .... ...6
f: .... .... .... ...1 i: .... .... .... ...5 data: .... .... .... ...5
f: .... .... .... ...1 i: .... .... .... ...4 data: .... .... .... ...4
f: .... .... .... ...1 i: .... .... .... ...3 data: .... .... .... ...3
f: .... .... .... ...1 i: .... .... .... ...2 data: .... .... .... ...2
f: .... .... .... ...1 i: .... .... .... ...1 data: .... .... .... ...1
f: .... .... .... ...1 i: .... .... .... .... data: .... .... .... ....
f: .... .... .... ....
END
Nasm::X86::Tree::peekSubTree($tree, $back)
Pop the last value out of a tree and return a tree descriptor positioned on it with the first/found fields set.
Parameter Description
1 $tree Tree descriptor
2 $back How far back to go with 1 being the top
Nasm::X86::Tree::pop($tree)
Pop the last value out of a tree and return the key/data/subTree in the tree descriptor.
Parameter Description
1 $tree Tree descriptor
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K loop => 16;
$N->for(sub
{my ($i) = @_;
$t->push($i);
});
$t->peek(K key => 1)->data ->outNL;
$t->peek(K key => 2)->data ->outNL;
$t->peek(K key => 3)->found->outNL;
$t->peek(2 * $N )->found->outNL;
$t->size->outNL;
$t->get(K(key => 8)); $t->found->out("f: ", " "); $t->key->out("i: ", " "); $t->data->outNL;
$N->for(sub
{my ($i) = @_;
$t->pop; $t->found->out("f: ", " "); $t->key->out("i: ", " "); $t->data->outNL;
});
$t->pop; $t->found->outNL("f: ");
ok Assemble eq => <<END, avx512=>1;
data: .... .... .... ...F
data: .... .... .... ...E
found: .... .... .... ..40
found: .... .... .... ....
size of tree: .... .... .... ..10
f: .... .... .... ...2 i: .... .... .... ...8 data: .... .... .... ...8
f: .... .... .... ...1 i: .... .... .... ...F data: .... .... .... ...F
f: .... .... .... ...1 i: .... .... .... ...E data: .... .... .... ...E
f: .... .... .... ...1 i: .... .... .... ...D data: .... .... .... ...D
f: .... .... .... ...1 i: .... .... .... ...C data: .... .... .... ...C
f: .... .... .... ...1 i: .... .... .... ...B data: .... .... .... ...B
f: .... .... .... ...1 i: .... .... .... ...A data: .... .... .... ...A
f: .... .... .... ...1 i: .... .... .... ...9 data: .... .... .... ...9
f: .... .... .... ...1 i: .... .... .... ...8 data: .... .... .... ...8
f: .... .... .... ...1 i: .... .... .... ...7 data: .... .... .... ...7
f: .... .... .... ...1 i: .... .... .... ...6 data: .... .... .... ...6
f: .... .... .... ...1 i: .... .... .... ...5 data: .... .... .... ...5
f: .... .... .... ...1 i: .... .... .... ...4 data: .... .... .... ...4
f: .... .... .... ...1 i: .... .... .... ...3 data: .... .... .... ...3
f: .... .... .... ...1 i: .... .... .... ...2 data: .... .... .... ...2
f: .... .... .... ...1 i: .... .... .... ...1 data: .... .... .... ...1
f: .... .... .... ...1 i: .... .... .... .... data: .... .... .... ....
f: .... .... .... ....
END
Nasm::X86::Tree::popSubTree($tree)
Pop the last value out of a tree and return a tree descriptor positioned on it with the first/found fields set.
Parameter Description
1 $tree Tree descriptor
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $T = $a->CreateTree;
$T->push(K key => 1);
$t->push($T);
$t->dump8xx('AA');
my $s = $t->popSubTree;
$t->dump8xx('BB');
$s->dump8xx('CC');
ok Assemble eq => <<END, avx512=>1;
AA
Tree: .... .... .... ..40
At: 180 length: 1, data: 1C0, nodes: 200, first: 40, root, leaf, trees: 1
Index: 0
Keys : 0
Data : 8*
Tree: 80
At: C0 length: 1, data: 100, nodes: 140, first: 80, root, leaf
Index: 0
Keys : 0
Data : 1
end
end
BB
- empty
CC
Tree: .... .... .... ..80
At: C0 length: 1, data: 100, nodes: 140, first: 80, root, leaf
Index: 0
Keys : 0
Data : 1
end
END
Nasm::X86::Tree::get($tree, $key)
Retrieves the element at the specified zero based index in the stack.
Parameter Description
1 $tree Tree descriptor
2 $key Zero based index
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K loop => 16;
$N->for(sub
{my ($i) = @_;
$t->push($i);
});
$t->peek(K key => 1)->data ->outNL;
$t->peek(K key => 2)->data ->outNL;
$t->peek(K key => 3)->found->outNL;
$t->peek(2 * $N )->found->outNL;
$t->size->outNL;
$t->get(K(key => 8)); $t->found->out("f: ", " "); $t->key->out("i: ", " "); $t->data->outNL;
$N->for(sub
{my ($i) = @_;
$t->pop; $t->found->out("f: ", " "); $t->key->out("i: ", " "); $t->data->outNL;
});
$t->pop; $t->found->outNL("f: ");
ok Assemble eq => <<END, avx512=>1;
data: .... .... .... ...F
data: .... .... .... ...E
found: .... .... .... ..40
found: .... .... .... ....
size of tree: .... .... .... ..10
f: .... .... .... ...2 i: .... .... .... ...8 data: .... .... .... ...8
f: .... .... .... ...1 i: .... .... .... ...F data: .... .... .... ...F
f: .... .... .... ...1 i: .... .... .... ...E data: .... .... .... ...E
f: .... .... .... ...1 i: .... .... .... ...D data: .... .... .... ...D
f: .... .... .... ...1 i: .... .... .... ...C data: .... .... .... ...C
f: .... .... .... ...1 i: .... .... .... ...B data: .... .... .... ...B
f: .... .... .... ...1 i: .... .... .... ...A data: .... .... .... ...A
f: .... .... .... ...1 i: .... .... .... ...9 data: .... .... .... ...9
f: .... .... .... ...1 i: .... .... .... ...8 data: .... .... .... ...8
f: .... .... .... ...1 i: .... .... .... ...7 data: .... .... .... ...7
f: .... .... .... ...1 i: .... .... .... ...6 data: .... .... .... ...6
f: .... .... .... ...1 i: .... .... .... ...5 data: .... .... .... ...5
f: .... .... .... ...1 i: .... .... .... ...4 data: .... .... .... ...4
f: .... .... .... ...1 i: .... .... .... ...3 data: .... .... .... ...3
f: .... .... .... ...1 i: .... .... .... ...2 data: .... .... .... ...2
f: .... .... .... ...1 i: .... .... .... ...1 data: .... .... .... ...1
f: .... .... .... ...1 i: .... .... .... .... data: .... .... .... ....
f: .... .... .... ....
END
Trees as Strings
Use trees as strings of dwords. The size of the tree is the length of the string. Each dword is consider as an indivisible unit. This arrangement allows the normal string operations of concatenation and substring to be performed easily.
Nasm::X86::Tree::appendAscii($string, $address, $size)
Append ascii bytes in memory to a tree acting as a string. The address and size of the source memory are specified via variables. Each byte should represent a valid ascii byte so that it can be considered, when left extended with 24 zero bits, as utf32.
Parameter Description
1 $string Tree descriptor of string to append to
2 $address Variable address of memory to append from
3 $size Variable size of memory
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $b = Rb(0x41..0x51);
$t->appendAscii(K(address=> $b), K(size => 1));
$t->outAsUtf8NL;
ok Assemble eq => <<END, avx512=>1;
A
END
Nasm::X86::Tree::append($string, $append)
Append the second source string to the first target string renumbering the keys of the source string to follow on from those of the target string. A string can safely be appended to itself.
Parameter Description
1 $string Tree descriptor of string to append to
2 $append Tree descriptor of string to append from
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
$t->push(K alpha => 0x03b1);
$t->push(K beta => 0x03b2);
$t->push(K gamma => 0x03b3);
$t->push(K delta => 0x03b4);
$t->outAsUtf8NL;
$t->append($t);
$t->outAsUtf8NL;
$t->append($t);
$t->outAsUtf8NL;
my $T = $t->substring(K(key => 4), K(key => 8));
$T->outAsUtf8NL;
my $r = $T->reverse;
$r->outAsUtf8NL;
ok Assemble eq => <<END, avx512=>1;
αβγδ
αβγδαβγδ
αβγδαβγδαβγδαβγδ
αβγδ
δγβα
END
my $a = CreateArea;
my $p = $a->CreateTree(usage=>q(stack));
my $q = $a->CreateTree;
my $r = $a->CreateTree;
my $s = $a->CreateTree;
my $t = $a->CreateTree;
$s->push(K char => ord $_) for split //, 'abc1';
$r->push(K char => ord $_) for split //, 'abd2';
$q->push(K char => ord $_) for split //, 'abe3';
$p += K(char => ord $_) for split //, 'abf4';
$t->putString($s); $t->putString($s); $t->putString($s); # Removing or duplicating these columsn should have no effect
$t->putString($r); $t->putString($r); $t->putString($r);
$t->putString($q); $t->putString($q); $t->putString($q);
$t->putString($p); $t->putString($p); $t->putString($p);
$t->dump8xx('t = abcd');
$t->find(K key => 0x61);
for my $f(qw(found key data subTree offset))
{$t->{$f}->outNL(sprintf("%-8s", $f));
}
$t->getString($s); $t->found->outNL("found: ");
$s--;
my $f = $t->getString($s); $f->found->outNL("found: "); $f->data->outNL("data: ");
$s->pop;
my $F = $t->getString($s); $F->found->outNL("found: "); $F->data->outNL("data: ");
ok Assemble eq => <<END, avx512=>1, trace=>1;
t = abcd
Tree: .... .... .... .140
At: 4C0 length: 1, data: 500, nodes: 540, first: 140, root, leaf, trees: 1
Index: 0
Keys : 61
Data : 48*
Tree: 480
At: 5C0 length: 1, data: 600, nodes: 640, first: 480, root, leaf, trees: 1
Index: 0
Keys : 62
Data : 58*
Tree: 580
At: 6C0 length: 4, data: 700, nodes: 740, first: 580, root, leaf, trees: 1111
Index: 0 1 2 3
Keys : 63 64 65 66
Data : 68* 88* 9C* B0*
Tree: 680
At: 7C0 length: 1, data: 800, nodes: 840, first: 680, root, leaf, trees: 1
Index: 0
Keys : 31
Data : 78*
Tree: 780
- empty
end
Tree: 880
At: 900 length: 1, data: 940, nodes: 980, first: 880, root, leaf, trees: 1
Index: 0
Keys : 32
Data : 8C*
Tree: 8C0
- empty
end
Tree: 9C0
At: A40 length: 1, data: A80, nodes: AC0, first: 9C0, root, leaf, trees: 1
Index: 0
Keys : 33
Data : A0*
Tree: A00
- empty
end
Tree: B00
At: B80 length: 1, data: BC0, nodes: C00, first: B00, root, leaf, trees: 1
Index: 0
Keys : 34
Data : B4*
Tree: B40
- empty
end
end
end
end
found .... .... .... ...1
key .... .... .... ..61
data .... .... .... .480
subTree .... .... .... ...1
offset .... .... .... .4C0
found: .... .... .... ...1
found: .... .... .... ...1
data: .... .... .... .680
found: .... .... .... ...1
data: .... .... .... .580
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $T = $a->CreateTree;
for my $s(qw(a ab abc))
{$t->putStringFromMemory(constantString $s);
}
for my $s(qw(ab abc abd))
{$T->putStringFromMemory(constantString $s);
}
my $R = $t->intersectionOfStringTrees($T);
$R->dump('rr');
ok Assemble eq => <<END, avx512=>1, trace=>1;
rr
At: 740 length: 3, data: 780, nodes: 7C0, first: 700, root, leaf
Index: 0 1 2
Keys : C0 1C0 2C0
Data : 960 1216 1472
end
END
my $f = "zzzOperators.lib";
my $library = Subroutine # The containing subroutine which will contain all the code written to the area
{my ($p, $s, $sub) = @_;
my $add = Subroutine # The contained routine that we wish to call
{my ($p, $s, $sub) = @_;
# my $c = $$p{a} + $$p{b};
# $$p{c}->copy($c);
PrintOutStringNL "Add";
} name => "+", parameters=>[qw(a b c)];
} name => "operators", parameters=>[qw(a b c)], export => $f;
ok Assemble eq => <<END, avx512=>1;
END
my $l = ReadArea $f; # Area containing subroutine library
my $a = CreateArea; # Area in which we will do the parse
my ($A, $N) = constantString qq(1+2); # Utf8 string to parse
my $p = $a->ParseUnisyn($A, $N-1); # Parse the utf8 string minus the final new line and zero?
$p->tree->dumpParseTree($A); # Parse tree
my $y = $l->yggdrasil; # Yggdrasil for the parse tree area
my $u = $y->findSubTree(Nasm::X86::Yggdrasil::UniqueStrings); # Unique strings in area from parse
my $o = $y->findSubTree(Nasm::X86::Yggdrasil::SubroutineOffsets); # Offsets of subroutines in library
my $i = $p->symbols->intersectionOfStringTrees($u); # Mapping between the number of a symbol to the number of a routine. The library sub tree SubroutineOffsets located via Yggdrasil can be used to obtain the actual offset of the routine in the library.
# $i->dump8xx('ii'); # Intersection of parse strings with library strings
# $o->dump8xx('oo'); # Subroutine offsets
$p->traverseApplyingLibraryOperators($l, $i); # Traverse a parse tree applying a library of operators
ok Assemble eq => <<END, avx512=>1;
+
._1
._2
Ascii
Operator
Add
Ascii
END
Nasm::X86::Tree::clone($string)
Clone a string.
Parameter Description
1 $string Tree descriptor
Nasm::X86::Tree::substring($string, $start, $finish)
Create the substring of the specified string between the specified start and end keys.
Parameter Description
1 $string Tree descriptor of string to extract from
2 $start Start key
3 $finish End key
Nasm::X86::Tree::reverse($string)
Create a clone of the string in reverse order
Parameter Description
1 $string Tree descriptor of string
Nasm::X86::Area::treeFromString($area, $address, $size)
Create a tree from a string of bytes held at a variable address with a variable length and return the resulting tree. The first element of the tree is the specified length, in bytes, of the string.
Parameter Description
1 $area Area description
2 $address Address of string
3 $size Length of string in bytes
Trees as sets
Trees of trees as sets
Nasm::X86::Tree::union($tree)
Given a tree of trees consider each sub tree as a set and form the union of all these sets as a new tree
Parameter Description
1 $tree Tree descriptor for a tree of trees
Example:
my $a = CreateArea;
my $r = $a->CreateTree;
my $s = $a->CreateTree;
my $t = $a->CreateTree;
$r->put(K(key => 1), K(data => 1));
$r->put(K(key => 2), K(data => 2));
$s->put(K(key => 1), K(data => 1));
$s->put(K(key => 3), K(data => 3));
$t->push($r);
$t->push($s);
my $u = $t->union;
$t->dump('input 1 2 1 3');
$u->dump('union 1 2 3');
my $i = $t->intersection;
$i->dump('intersection 1');
ok Assemble eq => <<END, avx512=>1;
input 1 2 1 3
At: 280 length: 2, data: 2C0, nodes: 300, first: C0, root, leaf, trees: 11
Index: 0 1
Keys : 0 1
Data : 10* 1C*
At: 100 length: 2, data: 140, nodes: 180, first: 40, root, leaf
Index: 0 1
Keys : 1 2
Data : 1 2
end
At: 1C0 length: 2, data: 200, nodes: 240, first: 80, root, leaf
Index: 0 1
Keys : 1 3
Data : 1 3
end
end
union 1 2 3
At: 380 length: 3, data: 3C0, nodes: 400, first: 340, root, leaf
Index: 0 1 2
Keys : 1 2 3
Data : 1 2 3
end
intersection 1
At: 480 length: 1, data: 4C0, nodes: 500, first: 440, root, leaf
Index: 0
Keys : 1
Data : 1
end
END
Nasm::X86::Tree::intersection($tree)
Given a tree of trees consider each sub tree as a set and form the intersection of all these sets as a new tree
Parameter Description
1 $tree Tree descriptor for a tree of trees
Example:
my $a = CreateArea;
my $r = $a->CreateTree;
my $s = $a->CreateTree;
my $t = $a->CreateTree;
$r->put(K(key => 1), K(data => 1));
$r->put(K(key => 2), K(data => 2));
$s->put(K(key => 1), K(data => 1));
$s->put(K(key => 3), K(data => 3));
$t->push($r);
$t->push($s);
my $u = $t->union;
$t->dump('input 1 2 1 3');
$u->dump('union 1 2 3');
my $i = $t->intersection;
$i->dump('intersection 1');
ok Assemble eq => <<END, avx512=>1;
input 1 2 1 3
At: 280 length: 2, data: 2C0, nodes: 300, first: C0, root, leaf, trees: 11
Index: 0 1
Keys : 0 1
Data : 10* 1C*
At: 100 length: 2, data: 140, nodes: 180, first: 40, root, leaf
Index: 0 1
Keys : 1 2
Data : 1 2
end
At: 1C0 length: 2, data: 200, nodes: 240, first: 80, root, leaf
Index: 0 1
Keys : 1 3
Data : 1 3
end
end
union 1 2 3
At: 380 length: 3, data: 3C0, nodes: 400, first: 340, root, leaf
Index: 0 1 2
Keys : 1 2 3
Data : 1 2 3
end
intersection 1
At: 480 length: 1, data: 4C0, nodes: 500, first: 440, root, leaf
Index: 0
Keys : 1
Data : 1
end
END
Trees of strings
Trees of strings assign a unique number to a string so that given a string we can produce a unique number representing the string.
Nasm::X86::Tree::putString($tree, $string)
Enter a string tree into a tree of strings and return the offset of the last inserted tree as the unique number of this string.
Parameter Description
1 $tree Tree descriptor representing string tree
2 $string Tree representing a string to be inserted into the string tree.
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $T = $a->CreateTree;
$t->push(K key => 1);
$t->push(K key => 2);
$t->push(K key => 3);
$T->putString($t)->outNL;
K(key => 2)->for(sub
{$t->pop;
$t->pop;
$t->push(K key => 3);
$t->push(K key => 4);
$T->putString($t)->outNL;
$t->pop;
$t->pop;
$t->push(K key => 4);
$t->push(K key => 5);
$T->putString($t)->outNL;
});
ok Assemble eq => <<END, avx512=>1, trace=>0, mix=>1;
first: .... .... .... .380
first: .... .... .... .4C0
first: .... .... .... .6..
first: .... .... .... .4C0
first: .... .... .... .6..
END
Nasm::X86::Tree::putStringFromMemory($tree, $address, $size)
Enter a string in memory into a tree of strings and return the offset of the last inserted tree as the unique number of this string.
Parameter Description
1 $tree Tree descriptor representing string tree
2 $address Variable address in memory of string
3 $size Variable size of string
Nasm::X86::Tree::getString($tree, $string)
Locate the tree in a string tree representing the specified string but only if it is present and return its data in found and data. If the string is not present then return a tree descriptor with found set to zero.
Parameter Description
1 $tree Tree descriptor representing string tree
2 $string Tree representing a string to be inserted into the string tree.
Nasm::X86::Tree::getStringFromMemory($tree, $address, $size)
Locate the tree in a string tree representing the specified string but only if it is present and return its data in found and data. If the string is not present then return a tree descriptor with found set to zero.
Parameter Description
1 $tree Tree descriptor representing string tree
2 $address Variable address in memory of string
3 $size Variable size of string
Print a tree
Nasm::X86::Tree::printInOrder($tree, $title)
Print a tree in order
Parameter Description
1 $tree Tree
2 $title Title
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K count => 128;
$N->for(sub
{my ($index, $start, $next, $end) = @_;
my $l0 = ($N-$index) / 2;
my $l1 = ($N+$index) / 2;
my $h0 = $N-$index;
my $h1 = $N+$index;
$t->put($l0, $l0 * 2);
$t->put($h1, $h1 * 2);
$t->put($l1, $l1 * 2);
$t->put($h0, $h0 * 2);
});
$t->printInOrder("AAAA");
ok Assemble eq => <<END, avx512=>1;
AAAA 256: 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF
END
Nasm::X86::Tree::outAsUtf8($string)
Print the data values of the specified string on stdout assuming each data value is a utf32 character and that the output device supports utf8
Parameter Description
1 $string Tree descriptor of string
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
$t->push(K alpha => 0x03b1);
$t->push(K beta => 0x03b2);
$t->push(K gamma => 0x03b3);
$t->push(K delta => 0x03b4);
$t->outAsUtf8NL;
$t->append($t);
$t->outAsUtf8NL;
$t->append($t);
$t->outAsUtf8NL;
my $T = $t->substring(K(key => 4), K(key => 8));
$T->outAsUtf8NL;
my $r = $T->reverse;
$r->outAsUtf8NL;
ok Assemble eq => <<END, avx512=>1;
αβγδ
αβγδαβγδ
αβγδαβγδαβγδαβγδ
αβγδ
δγβα
END
my $a = CreateArea;
my $p = $a->CreateTree(usage=>q(stack));
my $q = $a->CreateTree;
my $r = $a->CreateTree;
my $s = $a->CreateTree;
my $t = $a->CreateTree;
$s->push(K char => ord $_) for split //, 'abc1';
$r->push(K char => ord $_) for split //, 'abd2';
$q->push(K char => ord $_) for split //, 'abe3';
$p += K(char => ord $_) for split //, 'abf4';
$t->putString($s); $t->putString($s); $t->putString($s); # Removing or duplicating these columsn should have no effect
$t->putString($r); $t->putString($r); $t->putString($r);
$t->putString($q); $t->putString($q); $t->putString($q);
$t->putString($p); $t->putString($p); $t->putString($p);
$t->dump8xx('t = abcd');
$t->find(K key => 0x61);
for my $f(qw(found key data subTree offset))
{$t->{$f}->outNL(sprintf("%-8s", $f));
}
$t->getString($s); $t->found->outNL("found: ");
$s--;
my $f = $t->getString($s); $f->found->outNL("found: "); $f->data->outNL("data: ");
$s->pop;
my $F = $t->getString($s); $F->found->outNL("found: "); $F->data->outNL("data: ");
ok Assemble eq => <<END, avx512=>1, trace=>1;
t = abcd
Tree: .... .... .... .140
At: 4C0 length: 1, data: 500, nodes: 540, first: 140, root, leaf, trees: 1
Index: 0
Keys : 61
Data : 48*
Tree: 480
At: 5C0 length: 1, data: 600, nodes: 640, first: 480, root, leaf, trees: 1
Index: 0
Keys : 62
Data : 58*
Tree: 580
At: 6C0 length: 4, data: 700, nodes: 740, first: 580, root, leaf, trees: 1111
Index: 0 1 2 3
Keys : 63 64 65 66
Data : 68* 88* 9C* B0*
Tree: 680
At: 7C0 length: 1, data: 800, nodes: 840, first: 680, root, leaf, trees: 1
Index: 0
Keys : 31
Data : 78*
Tree: 780
- empty
end
Tree: 880
At: 900 length: 1, data: 940, nodes: 980, first: 880, root, leaf, trees: 1
Index: 0
Keys : 32
Data : 8C*
Tree: 8C0
- empty
end
Tree: 9C0
At: A40 length: 1, data: A80, nodes: AC0, first: 9C0, root, leaf, trees: 1
Index: 0
Keys : 33
Data : A0*
Tree: A00
- empty
end
Tree: B00
At: B80 length: 1, data: BC0, nodes: C00, first: B00, root, leaf, trees: 1
Index: 0
Keys : 34
Data : B4*
Tree: B40
- empty
end
end
end
end
found .... .... .... ...1
key .... .... .... ..61
data .... .... .... .480
subTree .... .... .... ...1
offset .... .... .... .4C0
found: .... .... .... ...1
found: .... .... .... ...1
data: .... .... .... .680
found: .... .... .... ...1
data: .... .... .... .580
END
my $a = CreateArea;
my $t = $a->CreateTree;
my $T = $a->CreateTree;
for my $s(qw(a ab abc))
{$t->putStringFromMemory(constantString $s);
}
for my $s(qw(ab abc abd))
{$T->putStringFromMemory(constantString $s);
}
my $R = $t->intersectionOfStringTrees($T);
$R->dump('rr');
ok Assemble eq => <<END, avx512=>1, trace=>1;
rr
At: 740 length: 3, data: 780, nodes: 7C0, first: 700, root, leaf
Index: 0 1 2
Keys : C0 1C0 2C0
Data : 960 1216 1472
end
END
my $f = "zzzOperators.lib";
my $library = Subroutine # The containing subroutine which will contain all the code written to the area
{my ($p, $s, $sub) = @_;
my $add = Subroutine # The contained routine that we wish to call
{my ($p, $s, $sub) = @_;
# my $c = $$p{a} + $$p{b};
# $$p{c}->copy($c);
PrintOutStringNL "Add";
} name => "+", parameters=>[qw(a b c)];
} name => "operators", parameters=>[qw(a b c)], export => $f;
ok Assemble eq => <<END, avx512=>1;
END
my $l = ReadArea $f; # Area containing subroutine library
my $a = CreateArea; # Area in which we will do the parse
my ($A, $N) = constantString qq(1+2); # Utf8 string to parse
my $p = $a->ParseUnisyn($A, $N-1); # Parse the utf8 string minus the final new line and zero?
$p->tree->dumpParseTree($A); # Parse tree
my $y = $l->yggdrasil; # Yggdrasil for the parse tree area
my $u = $y->findSubTree(Nasm::X86::Yggdrasil::UniqueStrings); # Unique strings in area from parse
my $o = $y->findSubTree(Nasm::X86::Yggdrasil::SubroutineOffsets); # Offsets of subroutines in library
my $i = $p->symbols->intersectionOfStringTrees($u); # Mapping between the number of a symbol to the number of a routine. The library sub tree SubroutineOffsets located via Yggdrasil can be used to obtain the actual offset of the routine in the library.
# $i->dump8xx('ii'); # Intersection of parse strings with library strings
# $o->dump8xx('oo'); # Subroutine offsets
$p->traverseApplyingLibraryOperators($l, $i); # Traverse a parse tree applying a library of operators
ok Assemble eq => <<END, avx512=>1;
+
._1
._2
Ascii
Operator
Add
Ascii
END
Nasm::X86::Tree::outAsUtf8NL($string)
Print the data values of the specified string on stdout assuming each data value is a utf32 character and that the output device supports utf8. Follow the print with a new line character.
Parameter Description
1 $string Tree descriptor of string
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $b = Rb(0x41..0x51);
$t->appendAscii(K(address=> $b), K(size => 1));
$t->outAsUtf8NL;
ok Assemble eq => <<END, avx512=>1;
A
END
Nasm::X86::Tree::plusAssign($tree, $data)
Use plus to push an element to a tree being used as a stack
Parameter Description
1 $tree Tree being used as a stack
2 $data Data to push
Nasm::X86::Tree::dec($tree)
Pop from the tree if it is being used as a stack
Parameter Description
1 $tree Tree being used as a stack
Unisyn
Parse Unisyn language statements.
Lex
Lexical Analysis
Nasm::X86::Unisyn::Lex::Number::S {0}(sub Nasm::X86::Unisyn::Lex::Number::F {1})
Start symbol
Parameter Description
1 sub Nasm::X86::Unisyn::Lex::Number::F {1} End symbol
Nasm::X86::Unisyn::Lex::Number::F {1}(sub Nasm::X86::Unisyn::Lex::Number::A {2})
End symbol
Parameter Description
1 sub Nasm::X86::Unisyn::Lex::Number::A {2} ASCII characters extended with circled characters to act as escape sequences.
Nasm::X86::Unisyn::Lex::Number::A {2}()
ASCII characters extended with circled characters to act as escape sequences.
Nasm::X86::Unisyn::Lex::Letter::A()
ASCII characters extended with circled characters to act as escape sequences.
Nasm::X86::Unisyn::Lex::Number::d {3}()
Infix operator with left to right binding at priority 3
Nasm::X86::Unisyn::Lex::Letter::d()
Infix operator with left to right binding at priority 3
Nasm::X86::Unisyn::Lex::Number::p {4}()
Prefix operator - applies only to the following variable or bracketed term
Nasm::X86::Unisyn::Lex::Letter::p()
Prefix operator - applies only to the following variable or bracketed term
Nasm::X86::Unisyn::Lex::Number::a {5}()
Assign infix operator with right to left binding at priority 2
Nasm::X86::Unisyn::Lex::Letter::a()
Assign infix operator with right to left binding at priority 2
Nasm::X86::Unisyn::Lex::Number::v {6}()
Variable names
Nasm::X86::Unisyn::Lex::Letter::v()
Variable names
Nasm::X86::Unisyn::Lex::Number::q {7}()
Suffix operator - applies only to the preceding variable or bracketed term
Nasm::X86::Unisyn::Lex::Letter::q()
Suffix operator - applies only to the preceding variable or bracketed term
Nasm::X86::Unisyn::Lex::Number::s {8}(sub Nasm::X86::Unisyn::Lex::Letter::s {(0x27e2)})
Infix operator with left to right binding at priority 1
Parameter Description
1 sub Nasm::X86::Unisyn::Lex::Letter::s {(0x27e2)} Infix operator with left to right binding at priority 1
Nasm::X86::Unisyn::Lex::Letter::s {}(sub Nasm::X86::Unisyn::Lex::Number::e {9})
Infix operator with left to right binding at priority 1
Parameter Description
1 sub Nasm::X86::Unisyn::Lex::Number::e {9} Infix operator with left to right binding at priority 4
Nasm::X86::Unisyn::Lex::Number::e {9}()
Infix operator with left to right binding at priority 4
Nasm::X86::Unisyn::Lex::Letter::e()
Infix operator with left to right binding at priority 4
Nasm::X86::Unisyn::Lex::Number::b {10}()
Open
Nasm::X86::Unisyn::Lex::Letter::b()
Open
Nasm::X86::Unisyn::Lex::Number::B {11}()
Close
Nasm::X86::Unisyn::Lex::Letter::B()
Close
Nasm::X86::Unisyn::Lex::composeUnisyn($words)
Compose phrases of Earl Zero, write them to a temporary file, return the temporary file name
Parameter Description
1 $words String of words
Example:
my $f = Nasm::X86::Unisyn::Lex::composeUnisyn # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
('va a= b( vb e+ vc B) e* vd dif ve');
is_deeply readFile($f), "𝗔=【𝗕+𝗖】✕𝗗𝐈𝐅𝗘
";
my ($a8, $s8) = ReadFile K file => Rs $f; # Address and size of memory containing contents of the file
$s8->outNL;
my ($a32, $s32, $count, $fail) = ConvertUtf8ToUtf32 $a8, $s8; # Convert an allocated block string of utf8 to an allocated block of utf32 and return its address and length.
$_->outNL for $s32, $count, $fail;
ok Assemble eq => <<END, avx512=>1;
size: .... .... .... ..2C
s32: .... .... .... ..B0
count: .... .... .... ...D
fail: .... .... .... ....
END
unlink $f;
my $f = Nasm::X86::Unisyn::Lex::composeUnisyn # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
('va a= b( vb e+ vc B) e* vd dif ve');
is_deeply readFile($f), "𝗔=【𝗕+𝗖】✕𝗗𝐈𝐅𝗘
";
my ($a8, $s8) = ReadFile K file => Rs $f; # Address and size of memory containing contents of the file
my $a = CreateArea; # Area in which we will do the parse
#$TraceMode = 1;
my $parse = $a->ParseUnisyn($a8, $s8-2); # Parse the utf8 string minus the final new line and zero?
$parse->char ->outNL; # Print results
$parse->fail ->outNL;
$parse->position->outNL;
$parse->match ->outNL;
$parse->reason ->outNL;
$parse->tree->dumpParseTree($a8);
ok Assemble eq => <<END, avx512=>1, trace=>0;
parseChar: .... .... ...1 D5D8
parseFail: .... .... .... ....
pos: .... .... .... ..2B
parseMatch: .... .... .... ....
parseReason: .... .... .... ....
=
._𝗔
._𝐈𝐅
._._✕
._._._【
._._._._+
._._._._._𝗕
._._._._._𝗖
._._._𝗗
._._𝗘
END
unlink $f;
Nasm::X86::Unisyn::Lex::PermissibleTransitions($area)
Create and load the table of lexical transitions.
Parameter Description
1 $area Area in which to create the table
Example:
my $a = CreateArea;
my $t = Nasm::X86::Unisyn::Lex::PermissibleTransitions $a; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
$t->size->outNL;
ok Assemble eq => <<END, avx512=>1, label=>'t3';
size of tree: .... .... .... ...B
END
my $a = CreateArea;
my ($o, $c) = Nasm::X86::Unisyn::Lex::OpenClose($a);
$o->printInOrder('OC');
$c->printInOrder('CO');
ok Assemble eq => <<END, avx512=>1;
OC 38: 2308230A23292768276A276C276E27702772277427E627E827EA27EC27EE2983298529872989298B298D298F299129932995299729FC2E283008300A3010301430163018301AFD3EFF08FF5F
CO 38: 2309230B232A2769276B276D276F27712773277527E727E927EB27ED27EF298429862988298A298C298E2990299229942996299829FD2E293009300B3011301530173019301BFD3FFF09FF60
END
Nasm::X86::Unisyn::Lex::OpenClose($area)
Create and load the table of open to close bracket mappings
Parameter Description
1 $area Area in which to create the table
Nasm::X86::Unisyn::Lex::LoadAlphabets($a)
Create and load the table of lexical alphabets.
Parameter Description
1 $a Area in which to create the table
Example:
my $a = CreateArea;
my $t = Nasm::X86::Unisyn::Lex::LoadAlphabets $a; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
$t->find(K alpha => ord('𝝰')); $t->found->outNL; $t->data ->outNL;
ok Assemble eq => <<END, avx512=>1;
found: .... .... .... ...8
data: .... .... .... ...6
END
Nasm::X86::Unisyn::Lex::Reason::Success {0};(sub Nasm::X86::Unisyn::Lex::Reason::BadUtf8 {1};)
Successful parse
Parameter Description
1 sub Nasm::X86::Unisyn::Lex::Reason::BadUtf8 {1}; Bad utf8 character encountered
Nasm::X86::Unisyn::Lex::Reason::BadUtf8 {1};(sub Nasm::X86::Unisyn::Lex::Reason::InvalidChar {2};)
Bad utf8 character encountered
Parameter Description
1 sub Nasm::X86::Unisyn::Lex::Reason::InvalidChar {2}; Character not part of Earl Zero
Nasm::X86::Unisyn::Lex::Reason::InvalidChar {2};(sub Nasm::X86::Unisyn::Lex::Reason::InvalidTransition {3};)
Character not part of Earl Zero
Parameter Description
1 sub Nasm::X86::Unisyn::Lex::Reason::InvalidTransition {3}; Transition from one lexical item to another not allowed
Nasm::X86::Unisyn::Lex::Reason::InvalidTransition {3};(sub Nasm::X86::Unisyn::Lex::Reason::TrailingClose {4};)
Transition from one lexical item to another not allowed
Parameter Description
1 sub Nasm::X86::Unisyn::Lex::Reason::TrailingClose {4}; Trailing closing bracket discovered
Nasm::X86::Unisyn::Lex::Reason::TrailingClose {4};(sub Nasm::X86::Unisyn::Lex::Reason::Mismatch {5};)
Trailing closing bracket discovered
Parameter Description
1 sub Nasm::X86::Unisyn::Lex::Reason::Mismatch {5}; Mismatched bracket
Nasm::X86::Unisyn::Lex::Reason::Mismatch {5};(sub Nasm::X86::Unisyn::Lex::Reason::NotFinal {6};)
Mismatched bracket
Parameter Description
1 sub Nasm::X86::Unisyn::Lex::Reason::NotFinal {6}; Expected something after final character
Nasm::X86::Unisyn::Lex::Reason::NotFinal {6};(sub Nasm::X86::Unisyn::Lex::Reason::BracketsNotClosed {7};)
Expected something after final character
Parameter Description
1 sub Nasm::X86::Unisyn::Lex::Reason::BracketsNotClosed {7}; Open brackets not closed at end of
Nasm::X86::Unisyn::Lex::Reason::BracketsNotClosed {7};()
Open brackets not closed at end of
Nasm::X86::Unisyn::Lex::position {0};(sub Nasm::X86::Unisyn::Lex::length {1};)
Position of the parsed item in the input text
Parameter Description
1 sub Nasm::X86::Unisyn::Lex::length {1}; Length of the lexical item in bytes
Nasm::X86::Unisyn::Lex::length {1};(sub Nasm::X86::Unisyn::Lex::type {2};)
Length of the lexical item in bytes
Parameter Description
1 sub Nasm::X86::Unisyn::Lex::type {2}; Type of the lexical item
Nasm::X86::Unisyn::Lex::type {2};(sub Nasm::X86::Unisyn::Lex::left {3};)
Type of the lexical item
Parameter Description
1 sub Nasm::X86::Unisyn::Lex::left {3}; Left operand
Nasm::X86::Unisyn::Lex::left {3};(sub Nasm::X86::Unisyn::Lex::right {4};)
Left operand
Parameter Description
1 sub Nasm::X86::Unisyn::Lex::right {4}; Right operand
Nasm::X86::Unisyn::Lex::right {4};(sub Nasm::X86::Unisyn::Lex::symbol {5};)
Right operand
Parameter Description
1 sub Nasm::X86::Unisyn::Lex::symbol {5}; Symbol
Nasm::X86::Unisyn::Lex::symbol {5};()
Symbol
Nasm::X86::Area::ParseUnisyn($area, $a8, $s8)
Parse a string of utf8 characters
Parameter Description
1 $area Area in which to create the parse tree
2 $a8 Address of utf8 string
3 $s8 Size of the utf8 string in bytes
Assemble
Assemble generated code
CallC($sub, @parameters)
Call a C subroutine.
Parameter Description
1 $sub Name of the sub to call
2 @parameters Parameters
Example:
my $format = Rs "Hello %s
";
my $data = Rs "World";
Extern qw(printf exit malloc strcpy); Link 'c';
CallC 'malloc', length($format)+1; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Mov r15, rax;
CallC 'strcpy', r15, $format; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
CallC 'printf', r15, $data; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
CallC 'exit', 0; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
ok Assemble avx512=>0, eq => <<END;
Hello World
END
Extern(@externalReferences)
Name external references.
Parameter Description
1 @externalReferences External references
Example:
my $format = Rs "Hello %s
";
my $data = Rs "World";
Extern qw(printf exit malloc strcpy); Link 'c'; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
CallC 'malloc', length($format)+1;
Mov r15, rax;
CallC 'strcpy', r15, $format;
CallC 'printf', r15, $data;
CallC 'exit', 0;
ok Assemble avx512=>0, eq => <<END;
Hello World
END
Link(@libraries)
Libraries to link with.
Parameter Description
1 @libraries External references
Example:
my $format = Rs "Hello %s
";
my $data = Rs "World";
Extern qw(printf exit malloc strcpy); Link 'c'; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
CallC 'malloc', length($format)+1;
Mov r15, rax;
CallC 'strcpy', r15, $format;
CallC 'printf', r15, $data;
CallC 'exit', 0;
ok Assemble avx512=>0, eq => <<END;
Hello World
END
Start()
Initialize the assembler.
Exit($c)
Exit with the specified return code or zero if no return code supplied. Assemble() automatically adds a call to Exit(0) if the last operation in the program is not a call to Exit.
Parameter Description
1 $c Return code
Example:
Comment "Print a string from memory";
my $s = "Hello World";
Mov rax, Rs($s);
Mov rdi, length $s;
PrintOutMemory;
Exit(0); # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
ok Assemble(avx512=>0) =~ m(Hello World);
lineNumbersToSubNamesFromSource()
Create a hash mapping line numbers to subroutine definitions
locateRunTimeErrorInDebugTraceOutput()
Locate the traceback of the last known good position in the trace file before the error occurred
fixMixOutput()
Fix mix output so we know where the code comes from in the source file
countComments($count)
Count the number of comments in the text of the program so we can see what code is being generated too often
Parameter Description
1 $count Comment count
onGitHub()
Whether we are on GitHub or not
Assemble(%options)
Assemble the generated code.
Parameter Description
1 %options Options
Example:
PrintOutStringNL "Hello World";
PrintOutStringNL "Hello
World";
PrintErrStringNL "Hello World";
ok Assemble debug => 0, eq => <<END, avx512=>0, label=>'t1'; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Hello World
Hello
World
END
Awaiting Classification
Routines that have not yet been classified.
Nasm::X86::Tree::dumpParseTree($tree, $source)
Dump a parse tree
Parameter Description
1 $tree Tree
2 $source Variable addressing source being parsed
Nasm::X86::Tree::put2($tree, $key1, $key2, $data)
Especially useful for Yggdrasil: puts a key into a tree if it is not already there and puts a sub tree under it into which the following key, data pair is place. In this regard it is very like putString() but without the overhead of building an intermediate tree and restricted to just two entries.
Parameter Description
1 $tree Tree
2 $key1 First key
3 $key2 Second key
4 $data Data
Nasm::X86::Tree::get2($tree, $key1, $key2)
Especially useful for Yggdrasil: gets the data associated with the pair of keys used to place it with put2(). The data is returned in the tree found and data fields using the normal tree search paradigm.
Parameter Description
1 $tree Tree
2 $key1 First key
3 $key2 Second key
Nasm::X86::Tree::putKeyString($tree, $key, $address, $size)
Especially useful for Yggdrasil: puts a key into a tree if it is not already there then puts a string into the sub string tree and return the unique number for the string.
Parameter Description
1 $tree Tree
2 $key Key
3 $address Variable address of string in memory
4 $size Variable size of string
Nasm::X86::Tree::getKeyString($tree, $key, $address, $size)
Especially useful for Yggdrasil: locates a string tree by key then locates a string in that string tree if both the key and the string exist. Th result of the search is indicated in the found and data fields of the returned tree descriptor.
Parameter Description
1 $tree Tree
2 $key Key
3 $address Variable address of string in memory
4 $size Variable size of string
Nasm::X86::Area::subroutineDefinition($area, $file, $name)
Get the definition of a subroutine from an area.
Parameter Description
1 $area Area - but only to get easy access to this routine
2 $file File containing area
3 $name Name of subroutine whose details we want
Nasm::X86::Area::sub($area, $string, $size)
Obtain the address of a subroutine held in an area from its name held in memory as a variable string.
Parameter Description
1 $area Area containing the subroutine
2 $string Variable address of string
3 $size Variable size of string
Nasm::X86::Area::subFromConstantString($area, $string)
Obtain the address of the subroutine held in an area from a constant string.
Parameter Description
1 $area Area containing the subroutine
2 $string A constant string
Nasm::X86::Unisyn::Parse::traverseApplyingLibraryOperators($parse, $library, $intersection)
Traverse a parse tree applying a library of operators
Parameter Description
1 $parse Parse tree
2 $library Library of operators
3 $intersection Intersection of parse tree with library of operators
Hash Definitions
Nasm::X86 Definition
Tree
Output fields
B
Log2 of size of initial allocation
N
Initial allocation
address
Variable that addresses the memory containing the area
area
Area definition.
block
Block used to generate this subroutine
constant
Constant if true
data
Variable containing the current data
dataOffset
The start of the data
end
End label for this subroutine
export
File this subroutine was exported to if any
expr
Expression that initializes the variable
first
Variable addressing offset to first block of the tree which is the header block
found
Variable indicating whether the last find was successful or not
freeOffset
Free chain offset
key
Variable containing the current key
keyDataMask
Key data mask
label
Address in memory
length
Number of keys in a maximal block
lengthLeft
Left minimal number of keys
lengthMiddle
Number of splitting key counting from 1
lengthMin
The smallest number of keys we are allowed in any node other than a root node.
lengthOffset
Offset of length in keys block. The length field is a word - see: "MultiWayTree.svg"
lengthRight
Right minimal number of keys
loop
Offset of keys, data, node loop.
maxKeys
Maximum number of keys allowed in this tree which might well ne less than the maximum we can store in a zmm.
maxKeysZ
The maximum possible number of keys in a zmm register
maxNodesZ
The maximum possible number of nodes in a zmm register
middleOffset
Offset of the middle slot in bytes
name
Name of the variable
nameString
Name of the sub as a string constant in read only storage
nextOffset
Position of next offset on free chain
nodeMask
Node mask
offset
Variable containing the offset of the block containing the current key
options
Options used by the author of the subroutine
parameters
Parameters definitions supplied by the author of the subroutine which get mapped in to parameter variables.
position
Position in stack frame
reference
Reference to another variable
rightOffset
Offset of the first right slot in bytes
rootOffset
Offset of the root field in the first block - the root field contains the offset of the block containing the keys of the root of the tree
sizeOffset
Offset of the size field which tells us the number of keys in the tree
splittingKey
Offset at which to split a full block
start
Start label for this subroutine which includes the enter instruction used to create a new stack frame
structureCopies
Copies of the structures passed to this subroutine with their variables replaced with references
structureVariables
Map structure variables to references at known positions in the sub
subTree
Variable indicating whether the last find found a sub tree
treeBits
Offset of tree bits in keys block. The tree bits field is a word, each bit of which tells us whether the corresponding data element is the offset (or not) to a sub tree of this tree .
treeBitsMask
Total of 14 tree bits
treeOffset
Yggdrasil - a tree of global variables in this area
up
Offset of up in data block.
upOffset
Offset of the up field which points to any containing tree
usage
How this tree is being used so that we can map operators into subroutine calls
usedOffset
Used field offset
variables
Map parameters to references at known positions in the sub
vars
Number of variables in subroutine
width
Width of a key or data slot.
zWidth
Width of a zmm register
zWidthD
Width of a zmm in double words being the element size
zmmBlock
Size of a zmm block - 64 bytes
Attributes
The following is a list of all the attributes in this package. A method coded with the same name in your package will over ride the method of the same name in this package and thus provide your value for the attribute in place of the default value supplied for this attribute by this package.
Replaceable Attribute List
Pi32 Pi64
Pi32
Pi as a 32 bit float.
Pi64
Pi as a 64 bit float.
Private Methods
Label({return "l".++$Labels unless @_;)
Create a unique label or reuse the one supplied.
Parameter Description
1 {return "l".++$Labels unless @_; Generate a label
Dbwdq($s, @d)
Layout data.
Parameter Description
1 $s Element size
2 @d Data to be laid out
Rbwdq($s, @d)
Layout data.
Parameter Description
1 $s Element size
2 @d Data to be laid out
PushRR(@r)
Push registers onto the stack without tracking.
Parameter Description
1 @r Register
PushR(@r)
Push registers onto the stack.
Parameter Description
1 @r Registers
Example:
Mov rax, 0x11111111;
Mov rbx, 0x22222222;
PushR my @save = (rax, rbx); # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
Mov rax, 0x33333333;
PopR;
PrintOutRegisterInHex rax;
PrintOutRegisterInHex rbx;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
rax: .... .... 1111 1111
rbx: .... .... 2222 2222
END
LoadZmm(17, 0x10..0x50);
PrintOutRegisterInHex zmm17;
Mov r14, 2; Mov r15, 3;
PrintOutRegisterInHex r14, r15;
PushR 14, 15, 16..31; # 𝗘𝘅𝗮𝗺𝗽𝗹𝗲
LoadZmm(17, 0x20..0x70);
PrintOutRegisterInHex zmm17;
Mov r14, 22; Mov r15, 33;
PopR;
PrintOutRegisterInHex zmm17;
PrintOutRegisterInHex r14, r15;
ok Assemble eq => <<END, avx512=>1, trace=>0, mix=>0;
zmm17: 4F4E 4D4C 4B4A 4948 4746 4544 4342 4140 - 3F3E 3D3C 3B3A 3938 3736 3534 3332 3130 + 2F2E 2D2C 2B2A 2928 2726 2524 2322 2120 - 1F1E 1D1C 1B1A 1918 1716 1514 1312 1110
r14: .... .... .... ...2
r15: .... .... .... ...3
zmm17: 5F5E 5D5C 5B5A 5958 5756 5554 5352 5150 - 4F4E 4D4C 4B4A 4948 4746 4544 4342 4140 + 3F3E 3D3C 3B3A 3938 3736 3534 3332 3130 - 2F2E 2D2C 2B2A 2928 2726 2524 2322 2120
zmm17: 4F4E 4D4C 4B4A 4948 4746 4544 4342 4140 - 3F3E 3D3C 3B3A 3938 3736 3534 3332 3130 + 2F2E 2D2C 2B2A 2928 2726 2524 2322 2120 - 1F1E 1D1C 1B1A 1918 1716 1514 1312 1110
r14: .... .... .... ...2
r15: .... .... .... ...3
END
PopRR(@r)
Pop registers from the stack without tracking.
Parameter Description
1 @r Register
SubroutineStartStack()
Initialize a new stack frame. The first quad of each frame has the address of the name of the sub in the low dword, and the parameter count in the upper byte of the quad. This field is all zeroes in the initial frame.
Nasm::X86::Subroutine::writeToArea($s, $subs)
Write a subroutine and its sub routines to an area then save the area in a file so that the subroutine can be reloaded at a later date either as separate file or via incorporation into a thing. A thing was originally an assembly of people as in "The Allthing" or the "Stort Thing"
Parameter Description
1 $s Sub definition of containing subroutine
2 $subs Definitions of contained subroutines
Nasm::X86::Subroutine::uploadToNewStackFrame($sub, $sv, $source, $target)
Map a variable in the current stack into a reference in the next stack frame being the one that will be used by this sub
Parameter Description
1 $sub Subroutine descriptor
2 $sv Structure variables
3 $source Source variable in the current stack frame
4 $target The reference in the new stack frame
Nasm::X86::Subroutine::validateParameters($sub, %options)
Check that the parameters and structures presented in a call to a subroutine math those defined for the subroutine.
Parameter Description
1 $sub Subroutine descriptor
2 %options Options
hexTranslateTable()
Create/address a hex translate table and return its label.
PrintOutRipInHex()
Print the instruction pointer in hex.
PrintOutRflagsInHex()
Print the flags register in hex.
Nasm::X86::Variable::dump($left, $channel, $newLine, $title1, $title2)
Dump the value of a variable to the specified channel adding an optional title and new line if requested.
Parameter Description
1 $left Left variable
2 $channel Channel
3 $newLine New line required
4 $title1 Optional leading title
5 $title2 Optional trailing title
Example:
my $a = V(a => 3); $a->outNL;
my $b = K(b => 2); $b->outNL;
my $c = $a + $b; $c->outNL;
my $d = $c - $a; $d->outNL;
my $g = $a * $b; $g->outNL;
my $h = $g / $b; $h->outNL;
my $i = $a % $b; $i->outNL;
If ($a == 3,
Then
{PrintOutStringNL "a == 3"
},
Else
{PrintOutStringNL "a != 3"
});
++$a; $a->outNL;
--$a; $a->outNL;
ok Assemble(debug => 0, eq => <<END, avx512=>0);
a: .... .... .... ...3
b: .... .... .... ...2
(a add b): .... .... .... ...5
((a add b) sub a): .... .... .... ...2
(a times b): .... .... .... ...6
((a times b) / b): .... .... .... ...3
(a % b): .... .... .... ...1
a == 3
a: .... .... .... ...4
a: .... .... .... ...3
END
ClassifyRange($recordOffsetInRange, $address, $size)
Implementation of ClassifyInRange and ClassifyWithinRange.
Parameter Description
1 $recordOffsetInRange Record offset in classification in high byte if 1 else in classification if 2
2 $address Variable address of utf32 string to classify
3 $size Variable length of utf32 string to classify
Cstrlen()
Length of the C style string addressed by rax returning the length in r15.
Nasm::X86::Area::updateSpace($area, $size)
Make sure that a variable addressed area has enough space to accommodate content of a variable size.
Parameter Description
1 $area Area descriptor
2 $size Variable size needed
Nasm::X86::Area::freeZmmBlock($area, $offset)
Free a block in an area by placing it on the free chain.
Parameter Description
1 $area Area descriptor
2 $offset Offset of zmm block to be freed
Example:
my $a = CreateArea;
my $m = $a->allocZmmBlock;
K(K => Rd(1..16))->loadZmm(31);
$a->putZmmBlock ($m, 31);
$a->dump("A");
$a->getZmmBlock ($m, 30);
$a->clearZmmBlock($m);
$a->getZmmBlock ($m, 29);
$a->clearZmmBlock($m);
PrintOutRegisterInHex 31, 30, 29;
ok Assemble eq => <<END, avx512=>1;
A
Area Size: 4096 Used: 128
.... .... .... .... | __10 ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..80 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm29: .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
END
my $a = CreateArea;
K(loop => 3)->for(sub
{my ($i, $start, $next, $end) = @_;
$i->outNL;
my $m1 = $a->allocZmmBlock;
my $m2 = $a->allocZmmBlock;
K(K => Rd(1..16))->loadZmm(31);
K(K => Rd(17..32))->loadZmm(30);
PrintOutRegisterInHex 31, 30;
$a->putZmmBlock($m1, 31);
$a->putZmmBlock($m2, 30);
$a->dump("A");
$a->getZmmBlock($m1, 30);
$a->getZmmBlock($m2, 31);
PrintOutRegisterInHex 31, 30;
$a->clearZmmBlock($m1);
$a->freeZmmBlock($m1);
$a->dump("B");
$a->freeZmmBlock($m2);
$a->dump("C");
});
ok Assemble eq => <<END, avx512=>1;
index: .... .... .... ....
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
A
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
B
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
C
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
index: .... .... .... ...1
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
A
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..80 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
B
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..80 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
C
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
index: .... .... .... ...2
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
A
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
B
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
C
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
END
Nasm::X86::Area::getZmmBlock($area, $block, $zmm)
Get the block with the specified offset in the specified string and return it in the numbered zmm.
Parameter Description
1 $area Area descriptor
2 $block Offset of the block as a variable or register
3 $zmm Number of zmm register to contain block
Example:
my $a = CreateArea;
my $m = $a->allocZmmBlock;
K(K => Rd(1..16))->loadZmm(31);
$a->putZmmBlock ($m, 31);
$a->dump("A");
$a->getZmmBlock ($m, 30);
$a->clearZmmBlock($m);
$a->getZmmBlock ($m, 29);
$a->clearZmmBlock($m);
PrintOutRegisterInHex 31, 30, 29;
ok Assemble eq => <<END, avx512=>1;
A
Area Size: 4096 Used: 128
.... .... .... .... | __10 ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..80 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm29: .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
END
my $a = CreateArea;
K(loop => 3)->for(sub
{my ($i, $start, $next, $end) = @_;
$i->outNL;
my $m1 = $a->allocZmmBlock;
my $m2 = $a->allocZmmBlock;
K(K => Rd(1..16))->loadZmm(31);
K(K => Rd(17..32))->loadZmm(30);
PrintOutRegisterInHex 31, 30;
$a->putZmmBlock($m1, 31);
$a->putZmmBlock($m2, 30);
$a->dump("A");
$a->getZmmBlock($m1, 30);
$a->getZmmBlock($m2, 31);
PrintOutRegisterInHex 31, 30;
$a->clearZmmBlock($m1);
$a->freeZmmBlock($m1);
$a->dump("B");
$a->freeZmmBlock($m2);
$a->dump("C");
});
ok Assemble eq => <<END, avx512=>1;
index: .... .... .... ....
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
A
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
B
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
C
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
index: .... .... .... ...1
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
A
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..80 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
B
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..80 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
C
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
index: .... .... .... ...2
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
A
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
B
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
C
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
END
Nasm::X86::Area::putZmmBlock($area, $block, $zmm)
Write the numbered zmm to the block at the specified offset in the specified area.
Parameter Description
1 $area Area descriptor
2 $block Offset of the block as a variable
3 $zmm Number of zmm register to contain block
Example:
my $a = CreateArea;
my $m = $a->allocZmmBlock;
K(K => Rd(1..16))->loadZmm(31);
$a->putZmmBlock ($m, 31);
$a->dump("A");
$a->getZmmBlock ($m, 30);
$a->clearZmmBlock($m);
$a->getZmmBlock ($m, 29);
$a->clearZmmBlock($m);
PrintOutRegisterInHex 31, 30, 29;
ok Assemble eq => <<END, avx512=>1;
A
Area Size: 4096 Used: 128
.... .... .... .... | __10 ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..80 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm29: .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
END
my $a = CreateArea;
K(loop => 3)->for(sub
{my ($i, $start, $next, $end) = @_;
$i->outNL;
my $m1 = $a->allocZmmBlock;
my $m2 = $a->allocZmmBlock;
K(K => Rd(1..16))->loadZmm(31);
K(K => Rd(17..32))->loadZmm(30);
PrintOutRegisterInHex 31, 30;
$a->putZmmBlock($m1, 31);
$a->putZmmBlock($m2, 30);
$a->dump("A");
$a->getZmmBlock($m1, 30);
$a->getZmmBlock($m2, 31);
PrintOutRegisterInHex 31, 30;
$a->clearZmmBlock($m1);
$a->freeZmmBlock($m1);
$a->dump("B");
$a->freeZmmBlock($m2);
$a->dump("C");
});
ok Assemble eq => <<END, avx512=>1;
index: .... .... .... ....
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
A
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
B
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
C
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
index: .... .... .... ...1
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
A
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..80 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
B
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..80 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
C
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
index: .... .... .... ...2
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
A
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..20 .... ..1F .... ..1E .... ..1D - .... ..1C .... ..1B .... ..1A .... ..19 + .... ..18 .... ..17 .... ..16 .... ..15 - .... ..14 .... ..13 .... ..12 .... ..11
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
B
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 11__ ____ 12__ ____ 13__ ____ 14__ ____ 15__ ____ 16__ ____ 17__ ____ 18__ ____ 19__ ____ 1A__ ____ 1B__ ____ 1C__ ____ 1D__ ____ 1E__ ____ 1F__ ____ 20__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
C
Area Size: 4096 Used: 192
.... .... .... .... | __10 ____ ____ ____ C0__ ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | 40__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
END
Nasm::X86::Area::clearZmmBlock($area, $offset)
Clear the zmm block at the specified offset in the area
Parameter Description
1 $area Area descriptor
2 $offset Offset of the block as a variable
Example:
my $a = CreateArea;
my $m = $a->allocZmmBlock;
K(K => Rd(1..16))->loadZmm(31);
$a->putZmmBlock ($m, 31);
$a->dump("A");
$a->getZmmBlock ($m, 30);
$a->clearZmmBlock($m);
$a->getZmmBlock ($m, 29);
$a->clearZmmBlock($m);
PrintOutRegisterInHex 31, 30, 29;
ok Assemble eq => <<END, avx512=>1;
A
Area Size: 4096 Used: 128
.... .... .... .... | __10 ____ ____ ____ 80__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | .1__ ____ .2__ ____ .3__ ____ .4__ ____ .5__ ____ .6__ ____ .7__ ____ .8__ ____ .9__ ____ .A__ ____ .B__ ____ .C__ ____ .D__ ____ .E__ ____ .F__ ____ 10__ ____
.... .... .... ..80 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
zmm31: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm29: .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
END
Nasm::X86::Area::checkYggdrasilCreated($area)
Return a tree descriptor for the Yggdrasil world tree for an area. If Yggdrasil has not been created the found field of the returned descriptor will have zero in it else one.
Parameter Description
1 $area Area descriptor
Example:
$TraceMode = 1;
my $A = CreateArea;
my $t = $A->checkYggdrasilCreated;
$t->found->outNL;
my $y = $A->yggdrasil;
my $T = $A->checkYggdrasilCreated;
$T->found->outNL;
ok Assemble debug => 0, eq => <<END, avx512=>1, trace=>1;
found: .... .... .... ....
found: .... .... .... ...1
END
DescribeTree(%options)
Return a descriptor for a tree with the specified options.
Parameter Description
1 %options Tree description options
Nasm::X86::Area::DescribeTree($area, %options)
Return a descriptor for a tree in the specified area with the specified options.
Parameter Description
1 $area Area descriptor
2 %options Options for tree
Nasm::X86::Tree::copyDescription($tree)
Make a copy of a tree descriptor
Parameter Description
1 $tree Tree descriptor
Nasm::X86::Tree::firstFromMemory($tree, $zmm)
Load the first block for a tree into the numbered zmm.
Parameter Description
1 $tree Tree descriptor
2 $zmm Number of zmm to contain first block
Nasm::X86::Tree::firstIntoMemory($tree, $zmm)
Save the first block of a tree in the numbered zmm back into memory.
Parameter Description
1 $tree Tree descriptor
2 $zmm Number of zmm containing first block
Nasm::X86::Tree::rootIntoFirst($tree, $zmm, $value)
Put the contents of a variable into the root field of the first block of a tree when held in a zmm register.
Parameter Description
1 $tree Tree descriptor
2 $zmm Number of zmm containing first block
3 $value Variable containing value to put
Nasm::X86::Tree::rootFromFirst($tree, $zmm, %options)
Return a variable containing the offset of the root block of a tree from the first block when held in a zmm register.
Parameter Description
1 $tree Tree descriptor
2 $zmm Number of zmm containing first block
3 %options Options
Nasm::X86::Tree::root($t, $F, $offset)
Check whether the specified offset refers to the root of a tree when the first block is held in a zmm register. The result is returned by setting the zero flag to one if the offset is the root, else to zero.
Parameter Description
1 $t Tree descriptor
2 $F Zmm register holding first block
3 $offset Offset of block as a variable
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $b = $t->allocBlock(31, 30, 29);
K(data => 0x33)->dIntoZ(31, 4);
$t->lengthIntoKeys(31, K length =>0x9);
$t->putBlock($b, 31, 30, 29);
$t->getBlock($b, 25, 24, 23);
PrintOutRegisterInHex 25;
$t->lengthFromKeys(25)->outNL;
$t->firstFromMemory(28);
$t->incSizeInFirst (28);
$t->rootIntoFirst (28, K value => 0x2222);
$t->root (28, K value => 0x2222); PrintOutZF;
$t->root (28, K value => 0x2221); PrintOutZF;
$t->root (28, K value => 0x2222); PrintOutZF;
$t->firstIntoMemory(28);
$t->first->outNL;
$b->outNL;
$a->dump("1111");
PrintOutRegisterInHex 31, 30, 29, 28;
If $t->leafFromNodes(29) > 0, Then {PrintOutStringNL "29 Leaf"}, Else {PrintOutStringNL "29 Branch"};
If $t->leafFromNodes(28) > 0, Then {PrintOutStringNL "28 Leaf"}, Else {PrintOutStringNL "28 Branch"};
ok Assemble eq => <<END, avx512=>1;
zmm25: .... ..C0 .... ...9 .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... ..33 .... ....
b at offset 56 in zmm25: .... .... .... ...9
ZF=1
ZF=0
ZF=1
first: .... .... .... ..40
address: .... .... .... ..80
1111
Area Size: 4096 Used: 320
.... .... .... .... | __10 ____ ____ ____ 40.1 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 2222 ____ ____ ____ .1__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | ____ ____ 33__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ .9__ ____ C0__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ __.1 ____
zmm31: .... ..C0 .... ...9 .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... ..33 .... ....
zmm30: .... .1.. .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm29: .... ..40 .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm28: .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... ...1 .... .... .... 2222
29 Leaf
28 Branch
END
Nasm::X86::Tree::sizeFromFirst($tree, $zmm)
Return a variable containing the number of keys in the specified tree when the first block is held in a zmm register..
Parameter Description
1 $tree Tree descriptor
2 $zmm Number of zmm containing first block
Nasm::X86::Tree::sizeIntoFirst($tree, $zmm, $value)
Put the contents of a variable into the size field of the first block of a tree when the first block is held in a zmm register.
Parameter Description
1 $tree Tree descriptor
2 $zmm Number of zmm containing first block
3 $value Variable containing value to put
Nasm::X86::Tree::incSizeInFirst($tree, $zmm)
Increment the size field in the first block of a tree when the first block is held in a zmm register.
Parameter Description
1 $tree Tree descriptor
2 $zmm Number of zmm containing first block
Nasm::X86::Tree::incSize($tree)
Increment the size of a tree
Parameter Description
1 $tree Tree descriptor
Nasm::X86::Tree::decSizeInFirst($tree, $zmm)
Decrement the size field in the first block of a tree when the first block is held in a zmm register.
Parameter Description
1 $tree Tree descriptor
2 $zmm Number of zmm containing first block
Nasm::X86::Tree::decSize($tree)
Decrement the size of a tree
Parameter Description
1 $tree Tree descriptor
Nasm::X86::Tree::allocBlock($tree, $K, $D, $N)
Allocate a keys/data/node block and place it in the numbered zmm registers.
Parameter Description
1 $tree Tree descriptor
2 $K Numbered zmm for keys
3 $D Numbered zmm for data
4 $N Numbered zmm for children
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $b = $t->allocBlock(31, 30, 29);
K(data => 0x33)->dIntoZ(31, 4);
$t->lengthIntoKeys(31, K length =>0x9);
$t->putBlock($b, 31, 30, 29);
$t->getBlock($b, 25, 24, 23);
PrintOutRegisterInHex 25;
$t->lengthFromKeys(25)->outNL;
$t->firstFromMemory(28);
$t->incSizeInFirst (28);
$t->rootIntoFirst (28, K value => 0x2222);
$t->root (28, K value => 0x2222); PrintOutZF;
$t->root (28, K value => 0x2221); PrintOutZF;
$t->root (28, K value => 0x2222); PrintOutZF;
$t->firstIntoMemory(28);
$t->first->outNL;
$b->outNL;
$a->dump("1111");
PrintOutRegisterInHex 31, 30, 29, 28;
If $t->leafFromNodes(29) > 0, Then {PrintOutStringNL "29 Leaf"}, Else {PrintOutStringNL "29 Branch"};
If $t->leafFromNodes(28) > 0, Then {PrintOutStringNL "28 Leaf"}, Else {PrintOutStringNL "28 Branch"};
ok Assemble eq => <<END, avx512=>1;
zmm25: .... ..C0 .... ...9 .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... ..33 .... ....
b at offset 56 in zmm25: .... .... .... ...9
ZF=1
ZF=0
ZF=1
first: .... .... .... ..40
address: .... .... .... ..80
1111
Area Size: 4096 Used: 320
.... .... .... .... | __10 ____ ____ ____ 40.1 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 2222 ____ ____ ____ .1__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | ____ ____ 33__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ .9__ ____ C0__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ __.1 ____
zmm31: .... ..C0 .... ...9 .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... ..33 .... ....
zmm30: .... .1.. .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm29: .... ..40 .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm28: .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... ...1 .... .... .... 2222
29 Leaf
28 Branch
END
Nasm::X86::Tree::freeBlock($tree, $k, $K, $D, $N)
Free a keys/data/node block whose keys block entry is located at the specified offset.
Parameter Description
1 $tree Tree descriptor
2 $k Offset of keys block
3 $K Numbered zmm for keys
4 $D Numbered zmm for data
5 $N Numbered zmm for children
Nasm::X86::Tree::upFromData($tree, $zmm)
Up from the data zmm in a block in a tree
Parameter Description
1 $tree Tree descriptor
2 $zmm Number of zmm containing data block
Nasm::X86::Tree::upIntoData($tree, $value, $zmm)
Up into the data zmm in a block in a tree
Parameter Description
1 $tree Tree descriptor
2 $value Variable containing value to put
3 $zmm Number of zmm containing first block
Nasm::X86::Tree::lengthFromKeys($t, $zmm, %options)
Get the length of the keys block in the numbered zmm and return it as a variable.
Parameter Description
1 $t Tree descriptor
2 $zmm Zmm number
3 %options Options
Nasm::X86::Tree::lengthIntoKeys($t, $zmm, $length)
Get the length of the block in the numbered zmm from the specified variable.
Parameter Description
1 $t Tree
2 $zmm Zmm number
3 $length Length variable
Nasm::X86::Tree::incLengthInKeys($t, $K)
Increment the number of keys in a keys block or complain if such is not possible
Parameter Description
1 $t Tree
2 $K Zmm number
Nasm::X86::Tree::decLengthInKeys($t, $K)
Decrement the number of keys in a keys block or complain if such is not possible
Parameter Description
1 $t Tree
2 $K Zmm number
Nasm::X86::Tree::leafFromNodes($tree, $zmm, %options)
Return a variable containing true if we are on a leaf. We determine whether we are on a leaf by checking the offset of the first sub node. If it is zero we are on a leaf otherwise not.
Parameter Description
1 $tree Tree descriptor
2 $zmm Number of zmm containing node block
3 %options Options
Nasm::X86::Tree::getLoop($t, $zmm)
Return the value of the loop field as a variable.
Parameter Description
1 $t Tree descriptor
2 $zmm Numbered zmm
Nasm::X86::Tree::putLoop($t, $value, $zmm)
Set the value of the loop field from a variable.
Parameter Description
1 $t Tree descriptor
2 $value Variable containing offset of next loop entry
3 $zmm Numbered zmm
Nasm::X86::Tree::maskForFullKeyArea()
Place a mask for the full key area in the numbered mask register
Nasm::X86::Tree::maskForFullNodesArea()
Place a mask for the full nodes area in the numbered mask register
Nasm::X86::Tree::getBlock($tree, $offset, $K, $D, $N)
Get the keys, data and child nodes for a tree node from the specified offset in the area for the tree.
Parameter Description
1 $tree Tree descriptor
2 $offset Offset of block as a variable
3 $K Numbered zmm for keys
4 $D Numbered data for keys
5 $N Numbered zmm for nodes
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $b = $t->allocBlock(31, 30, 29);
K(data => 0x33)->dIntoZ(31, 4);
$t->lengthIntoKeys(31, K length =>0x9);
$t->putBlock($b, 31, 30, 29);
$t->getBlock($b, 25, 24, 23);
PrintOutRegisterInHex 25;
$t->lengthFromKeys(25)->outNL;
$t->firstFromMemory(28);
$t->incSizeInFirst (28);
$t->rootIntoFirst (28, K value => 0x2222);
$t->root (28, K value => 0x2222); PrintOutZF;
$t->root (28, K value => 0x2221); PrintOutZF;
$t->root (28, K value => 0x2222); PrintOutZF;
$t->firstIntoMemory(28);
$t->first->outNL;
$b->outNL;
$a->dump("1111");
PrintOutRegisterInHex 31, 30, 29, 28;
If $t->leafFromNodes(29) > 0, Then {PrintOutStringNL "29 Leaf"}, Else {PrintOutStringNL "29 Branch"};
If $t->leafFromNodes(28) > 0, Then {PrintOutStringNL "28 Leaf"}, Else {PrintOutStringNL "28 Branch"};
ok Assemble eq => <<END, avx512=>1;
zmm25: .... ..C0 .... ...9 .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... ..33 .... ....
b at offset 56 in zmm25: .... .... .... ...9
ZF=1
ZF=0
ZF=1
first: .... .... .... ..40
address: .... .... .... ..80
1111
Area Size: 4096 Used: 320
.... .... .... .... | __10 ____ ____ ____ 40.1 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 2222 ____ ____ ____ .1__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | ____ ____ 33__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ .9__ ____ C0__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ __.1 ____
zmm31: .... ..C0 .... ...9 .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... ..33 .... ....
zmm30: .... .1.. .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm29: .... ..40 .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm28: .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... ...1 .... .... .... 2222
29 Leaf
28 Branch
END
Nasm::X86::Tree::putBlock($t, $offset, $K, $D, $N)
Put a tree block held in three zmm registers back into the area holding the tree at the specified offset.
Parameter Description
1 $t Tree descriptor
2 $offset Offset of block as a variable
3 $K Numbered zmm for keys
4 $D Numbered data for keys
5 $N Numbered zmm for nodes
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $b = $t->allocBlock(31, 30, 29);
K(data => 0x33)->dIntoZ(31, 4);
$t->lengthIntoKeys(31, K length =>0x9);
$t->putBlock($b, 31, 30, 29);
$t->getBlock($b, 25, 24, 23);
PrintOutRegisterInHex 25;
$t->lengthFromKeys(25)->outNL;
$t->firstFromMemory(28);
$t->incSizeInFirst (28);
$t->rootIntoFirst (28, K value => 0x2222);
$t->root (28, K value => 0x2222); PrintOutZF;
$t->root (28, K value => 0x2221); PrintOutZF;
$t->root (28, K value => 0x2222); PrintOutZF;
$t->firstIntoMemory(28);
$t->first->outNL;
$b->outNL;
$a->dump("1111");
PrintOutRegisterInHex 31, 30, 29, 28;
If $t->leafFromNodes(29) > 0, Then {PrintOutStringNL "29 Leaf"}, Else {PrintOutStringNL "29 Branch"};
If $t->leafFromNodes(28) > 0, Then {PrintOutStringNL "28 Leaf"}, Else {PrintOutStringNL "28 Branch"};
ok Assemble eq => <<END, avx512=>1;
zmm25: .... ..C0 .... ...9 .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... ..33 .... ....
b at offset 56 in zmm25: .... .... .... ...9
ZF=1
ZF=0
ZF=1
first: .... .... .... ..40
address: .... .... .... ..80
1111
Area Size: 4096 Used: 320
.... .... .... .... | __10 ____ ____ ____ 40.1 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..40 | 2222 ____ ____ ____ .1__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
.... .... .... ..80 | ____ ____ 33__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ .9__ ____ C0__ ____
.... .... .... ..C0 | ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ __.1 ____
zmm31: .... ..C0 .... ...9 .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... ..33 .... ....
zmm30: .... .1.. .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm29: .... ..40 .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm28: .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... ...1 .... .... .... 2222
29 Leaf
28 Branch
END
Nasm::X86::Tree::firstNode($tree, $K, $D, $N)
Return as a variable the last node block in the specified tree node held in a zmm
Parameter Description
1 $tree Tree definition
2 $K Key zmm
3 $D Data zmm
4 $N Node zmm for a node block
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my ($K, $D, $N) = (31, 30, 29);
K(K => Rd( 1..16))->loadZmm($K);
K(K => Rd( 1..16))->loadZmm($N);
$t->lengthIntoKeys($K, K length => $t->length);
PrintOutRegisterInHex 31, 29;
my $f = $t->firstNode($K, $D, $N);
my $l = $t-> lastNode($K, $D, $N);
$f->outNL;
$l->outNL;
ok Assemble eq => <<END, avx512=>1;
zmm31: .... ..10 .... ...D .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm29: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
d at offset 0 in zmm29: .... .... .... ...1
d at offset (b at offset 56 in zmm31 times 4) in zmm29: .... .... .... ...E
END
my $a = CreateArea;
my $t = $a->CreateTree;
my ($K, $D, $N) = (31, 30, 29);
K(K => Rd( 1..16))->loadZmm($K);
K(K => Rd( 1..16))->loadZmm($N);
$t->lengthIntoKeys($K, K length => $t->length);
PrintOutRegisterInHex 31, 29;
my $f = $t->firstNode($K, $D, $N);
my $l = $t-> lastNode($K, $D, $N);
$f->outNL;
$l->outNL;
ok Assemble eq => <<END, avx512=>1;
zmm31: .... ..10 .... ...D .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm29: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
d at offset 0 in zmm29: .... .... .... ...1
d at offset (b at offset 56 in zmm31 times 4) in zmm29: .... .... .... ...E
END
Nasm::X86::Tree::lastNode($tree, $K, $D, $N)
Return as a variable the last node block in the specified tree node held in a zmm
Parameter Description
1 $tree Tree definition
2 $K Key zmm
3 $D Data zmm
4 $N Node zmm for a node block
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my ($K, $D, $N) = (31, 30, 29);
K(K => Rd( 1..16))->loadZmm($K);
K(K => Rd( 1..16))->loadZmm($N);
$t->lengthIntoKeys($K, K length => $t->length);
PrintOutRegisterInHex 31, 29;
my $f = $t->firstNode($K, $D, $N);
my $l = $t-> lastNode($K, $D, $N);
$f->outNL;
$l->outNL;
ok Assemble eq => <<END, avx512=>1;
zmm31: .... ..10 .... ...D .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm29: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
d at offset 0 in zmm29: .... .... .... ...1
d at offset (b at offset 56 in zmm31 times 4) in zmm29: .... .... .... ...E
END
my $a = CreateArea;
my $t = $a->CreateTree;
my ($K, $D, $N) = (31, 30, 29);
K(K => Rd( 1..16))->loadZmm($K);
K(K => Rd( 1..16))->loadZmm($N);
$t->lengthIntoKeys($K, K length => $t->length);
PrintOutRegisterInHex 31, 29;
my $f = $t->firstNode($K, $D, $N);
my $l = $t-> lastNode($K, $D, $N);
$f->outNL;
$l->outNL;
ok Assemble eq => <<END, avx512=>1;
zmm31: .... ..10 .... ...D .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm29: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
d at offset 0 in zmm29: .... .... .... ...1
d at offset (b at offset 56 in zmm31 times 4) in zmm29: .... .... .... ...E
END
Nasm::X86::Tree::relativeNode($tree, $offset, $relative, $K, $N)
Return as a variable a node offset relative (specified as ac constant) to another offset in the same node in the specified zmm
Parameter Description
1 $tree Tree definition
2 $offset Offset
3 $relative Relative location
4 $K Key zmm
5 $N Node zmm
Nasm::X86::Tree::nextNode($tree, $offset, $K, $N)
Return as a variable the next node block offset after the specified one in the specified zmm
Parameter Description
1 $tree Tree definition
2 $offset Offset
3 $K Key zmm
4 $N Node zmm
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
K(loop => 66)->for(sub
{my ($index, $start, $next, $end) = @_;
$t->put($index, 2 * $index);
});
$t->getBlock(K(offset=>0x200), 31, 30, 29);
$t->nextNode(K(offset=>0x440), 31, 29)->outRightInHexNL(K width => 3);
$t->prevNode(K(offset=>0x440), 31, 29)->outRightInHexNL(K width => 3);
ok Assemble eq => <<END, avx512=>1;
500
380
END
Nasm::X86::Tree::prevNode($tree, $offset, $K, $N)
Return as a variable the previous node block offset after the specified one in the specified zmm
Parameter Description
1 $tree Tree definition
2 $offset Offset
3 $K Key zmm
4 $N Node zmm
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
K(loop => 66)->for(sub
{my ($index, $start, $next, $end) = @_;
$t->put($index, 2 * $index);
});
$t->getBlock(K(offset=>0x200), 31, 30, 29);
$t->nextNode(K(offset=>0x440), 31, 29)->outRightInHexNL(K width => 3);
$t->prevNode(K(offset=>0x440), 31, 29)->outRightInHexNL(K width => 3);
ok Assemble eq => <<END, avx512=>1;
500
380
END
Nasm::X86::Tree::indexNode($tree, $offset, $K, $N)
Return, as a variable, the point mask obtained by testing the nodes in a block for specified offset. We have to supply the keys as well so that we can find the number of nodes. We need the number of nodes so that we only search the valid area not all possible node positions in the zmm.
Parameter Description
1 $tree Tree definition
2 $offset Key as a variable
3 $K Zmm containing keys
4 $N Comparison from B<Vpcmp>
Nasm::X86::Tree::expand($tree, $offset)
Expand the node at the specified offset in the specified tree if it needs to be expanded and is not the root node (which cannot be expanded because it has no siblings to take substance from whereas as all other nodes do). Set tree.found to the offset of the left sibling if the node at the specified offset was merged into it and freed else set tree.found to zero.
Parameter Description
1 $tree Tree descriptor
2 $offset Offset of node block to expand
Nasm::X86::Tree::replace($tree, $point, $K, $D)
Replace the key/data/subTree at the specified point in the specified zmm with the values found in the tree key/data/sub tree fields.
Parameter Description
1 $tree Tree descriptor
2 $point Point at which to extract
3 $K Keys zmm
4 $D Data zmm
Example:
my ($K, $D) = (31, 30);
K(K => Rd(reverse 1..16))->loadZmm($K);
K(K => Rd(reverse 1..16))->loadZmm($D);
PrintOutStringNL "Start";
PrintOutRegisterInHex $K, $D;
my $a = CreateArea;
my $t = $a->CreateTree;
K(loop => 14)->for(sub
{my ($index, $start, $next, $end) = @_;
$t->key ->copy($index);
$t->data ->copy($index * 2);
$t->subTree->copy($index % 2);
$t->replace(K(one=>1)<<$index, $K, $D);
$index->outNL;
PrintOutRegisterInHex $K, $D;
});
ok Assemble eq => <<END, avx512=>1;
Start
zmm31: .... ...1 .... ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ...8 + .... ...9 .... ...A .... ...B .... ...C - .... ...D .... ...E .... ...F .... ..10
zmm30: .... ...1 .... ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ...8 + .... ...9 .... ...A .... ...B .... ...C - .... ...D .... ...E .... ...F .... ..10
index: .... .... .... ....
zmm31: .... ...1 .... ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ...8 + .... ...9 .... ...A .... ...B .... ...C - .... ...D .... ...E .... ...F .... ....
zmm30: .... ...1 .... ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ...8 + .... ...9 .... ...A .... ...B .... ...C - .... ...D .... ...E .... ...F .... ....
index: .... .... .... ...1
zmm31: .... ...1 ...2 ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ...8 + .... ...9 .... ...A .... ...B .... ...C - .... ...D .... ...E .... ...1 .... ....
zmm30: .... ...1 .... ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ...8 + .... ...9 .... ...A .... ...B .... ...C - .... ...D .... ...E .... ...2 .... ....
index: .... .... .... ...2
zmm31: .... ...1 ...2 ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ...8 + .... ...9 .... ...A .... ...B .... ...C - .... ...D .... ...2 .... ...1 .... ....
zmm30: .... ...1 .... ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ...8 + .... ...9 .... ...A .... ...B .... ...C - .... ...D .... ...4 .... ...2 .... ....
index: .... .... .... ...3
zmm31: .... ...1 ...A ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ...8 + .... ...9 .... ...A .... ...B .... ...C - .... ...3 .... ...2 .... ...1 .... ....
zmm30: .... ...1 .... ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ...8 + .... ...9 .... ...A .... ...B .... ...C - .... ...6 .... ...4 .... ...2 .... ....
index: .... .... .... ...4
zmm31: .... ...1 ...A ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ...8 + .... ...9 .... ...A .... ...B .... ...4 - .... ...3 .... ...2 .... ...1 .... ....
zmm30: .... ...1 .... ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ...8 + .... ...9 .... ...A .... ...B .... ...8 - .... ...6 .... ...4 .... ...2 .... ....
index: .... .... .... ...5
zmm31: .... ...1 ..2A ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ...8 + .... ...9 .... ...A .... ...5 .... ...4 - .... ...3 .... ...2 .... ...1 .... ....
zmm30: .... ...1 .... ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ...8 + .... ...9 .... ...A .... ...A .... ...8 - .... ...6 .... ...4 .... ...2 .... ....
index: .... .... .... ...6
zmm31: .... ...1 ..2A ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ...8 + .... ...9 .... ...6 .... ...5 .... ...4 - .... ...3 .... ...2 .... ...1 .... ....
zmm30: .... ...1 .... ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ...8 + .... ...9 .... ...C .... ...A .... ...8 - .... ...6 .... ...4 .... ...2 .... ....
index: .... .... .... ...7
zmm31: .... ...1 ..AA ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ...8 + .... ...7 .... ...6 .... ...5 .... ...4 - .... ...3 .... ...2 .... ...1 .... ....
zmm30: .... ...1 .... ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ...8 + .... ...E .... ...C .... ...A .... ...8 - .... ...6 .... ...4 .... ...2 .... ....
index: .... .... .... ...8
zmm31: .... ...1 ..AA ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ...8 + .... ...7 .... ...6 .... ...5 .... ...4 - .... ...3 .... ...2 .... ...1 .... ....
zmm30: .... ...1 .... ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...7 .... ..10 + .... ...E .... ...C .... ...A .... ...8 - .... ...6 .... ...4 .... ...2 .... ....
index: .... .... .... ...9
zmm31: .... ...1 .2AA ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ...9 .... ...8 + .... ...7 .... ...6 .... ...5 .... ...4 - .... ...3 .... ...2 .... ...1 .... ....
zmm30: .... ...1 .... ...2 .... ...3 .... ...4 - .... ...5 .... ...6 .... ..12 .... ..10 + .... ...E .... ...C .... ...A .... ...8 - .... ...6 .... ...4 .... ...2 .... ....
index: .... .... .... ...A
zmm31: .... ...1 .2AA ...2 .... ...3 .... ...4 - .... ...5 .... ...A .... ...9 .... ...8 + .... ...7 .... ...6 .... ...5 .... ...4 - .... ...3 .... ...2 .... ...1 .... ....
zmm30: .... ...1 .... ...2 .... ...3 .... ...4 - .... ...5 .... ..14 .... ..12 .... ..10 + .... ...E .... ...C .... ...A .... ...8 - .... ...6 .... ...4 .... ...2 .... ....
index: .... .... .... ...B
zmm31: .... ...1 .AAA ...2 .... ...3 .... ...4 - .... ...B .... ...A .... ...9 .... ...8 + .... ...7 .... ...6 .... ...5 .... ...4 - .... ...3 .... ...2 .... ...1 .... ....
zmm30: .... ...1 .... ...2 .... ...3 .... ...4 - .... ..16 .... ..14 .... ..12 .... ..10 + .... ...E .... ...C .... ...A .... ...8 - .... ...6 .... ...4 .... ...2 .... ....
index: .... .... .... ...C
zmm31: .... ...1 .AAA ...2 .... ...3 .... ...C - .... ...B .... ...A .... ...9 .... ...8 + .... ...7 .... ...6 .... ...5 .... ...4 - .... ...3 .... ...2 .... ...1 .... ....
zmm30: .... ...1 .... ...2 .... ...3 .... ..18 - .... ..16 .... ..14 .... ..12 .... ..10 + .... ...E .... ...C .... ...A .... ...8 - .... ...6 .... ...4 .... ...2 .... ....
index: .... .... .... ...D
zmm31: .... ...1 2AAA ...2 .... ...D .... ...C - .... ...B .... ...A .... ...9 .... ...8 + .... ...7 .... ...6 .... ...5 .... ...4 - .... ...3 .... ...2 .... ...1 .... ....
zmm30: .... ...1 .... ...2 .... ..1A .... ..18 - .... ..16 .... ..14 .... ..12 .... ..10 + .... ...E .... ...C .... ...A .... ...8 - .... ...6 .... ...4 .... ...2 .... ....
END
Nasm::X86::Tree::overWriteKeyDataTreeInLeaf($tree, $point, $K, $D, $IK, $ID, $subTree)
Over write an existing key/data/sub tree triple in a set of zmm registers and set the tree bit as indicated.
Parameter Description
1 $tree Tree descriptor
2 $point Point at which to overwrite formatted as a one in a sea of zeros
3 $K Key
4 $D Data
5 $IK Insert key
6 $ID Insert data
7 $subTree Sub tree if tree.
Nasm::X86::Tree::indexXX($tree, $key, $K, $cmp, $inc, %options)
Return, as a variable, the mask obtained by performing a specified comparison on the key area of a node against a specified key.
Parameter Description
1 $tree Tree definition
2 $key Key to search for as a variable or a zmm
3 $K Zmm containing keys
4 $cmp Comparison from B<Vpcmp>
5 $inc Whether to increment the result by one
6 %options Options
Nasm::X86::Tree::indexEq($tree, $key, $K, %options)
Return the position of a key in a zmm equal to the specified key as a point in a variable.
Parameter Description
1 $tree Tree definition
2 $key Key as a variable
3 $K Zmm containing keys
4 %options Options
Example:
my $tree = DescribeTree(length => 7);
my $K = 31;
K(K => Rd(0..15))->loadZmm($K);
$tree->lengthIntoKeys($K, K length => 13);
K(loop => 16)->for(sub
{my ($index, $start, $next, $end) = @_;
my $f = $tree->indexEq ($index, $K);
$index->outRightInDec(K width => 2);
$f ->outRightInBin(K width => 14);
PrintOutStringNL " |"
});
ok Assemble eq => <<END, avx512=>1;
0 1 |
1 10 |
2 100 |
3 1000 |
4 10000 |
5 100000 |
6 1000000 |
7 10000000 |
8 100000000 |
9 1000000000 |
10 10000000000 |
11 100000000000 |
12 1000000000000 |
13 |
14 |
15 |
END
my $tree = DescribeTree();
$tree->maskForFullKeyArea(7); # Mask for full key area
PrintOutRegisterInHex k7;
$tree->maskForFullNodesArea(7); # Mask for full nodes area
PrintOutRegisterInHex k7;
ok Assemble eq => <<END, avx512=>1;
k7: .... .... .... 3FFF
k7: .... .... .... 7FFF
END
Nasm::X86::Tree::insertionPoint($tree, $key, $K, %options)
Return the position at which a key should be inserted into a zmm as a point in a variable.
Parameter Description
1 $tree Tree definition
2 $key Key as a variable
3 $K Zmm containing keys
4 %options Options
Example:
my $tree = DescribeTree(length => 7);
my $K = 31;
K(K => Rd(map {2*$_} 1..16))->loadZmm($K);
$tree->lengthIntoKeys($K, K length => 13);
K(loop => 32)->for(sub
{my ($index, $start, $next, $end) = @_;
my $f = $tree->insertionPoint($index, $K);
$index->outRightInDec(K width => 2);
$f ->outRightInBin(K width => 16);
PrintOutStringNL " |"
});
ok Assemble eq => <<END, avx512=>1;
0 1 |
1 1 |
2 10 |
3 10 |
4 100 |
5 100 |
6 1000 |
7 1000 |
8 10000 |
9 10000 |
10 100000 |
11 100000 |
12 1000000 |
13 1000000 |
14 10000000 |
15 10000000 |
16 100000000 |
17 100000000 |
18 1000000000 |
19 1000000000 |
20 10000000000 |
21 10000000000 |
22 100000000000 |
23 100000000000 |
24 1000000000000 |
25 1000000000000 |
26 10000000000000 |
27 10000000000000 |
28 10000000000000 |
29 10000000000000 |
30 10000000000000 |
31 10000000000000 |
END
Nasm::X86::Tree::insertKeyDataTreeIntoLeaf($tree, $point, $F, $K, $D, $IK, $ID, $subTree)
Insert a new key/data/sub tree triple into a set of zmm registers if there is room, increment the length of the node and set the tree bit as indicated and increment the number of elements in the tree.
Parameter Description
1 $tree Tree descriptor
2 $point Point at which to insert formatted as a one in a sea of zeros
3 $F First
4 $K Key
5 $D Data
6 $IK Insert key
7 $ID Insert data
8 $subTree Sub tree if tree.
Nasm::X86::Tree::splitNode($tree, $offset)
Split a node if it it is full returning a variable that indicates whether a split occurred or not.
Parameter Description
1 $tree Tree descriptor
2 $offset Offset of block in area of tree as a variable
Nasm::X86::Tree::splitNotRoot($tree, $newRight, $PK, $PD, $PN, $LK, $LD, $LN, $RK, $RD, $RN)
Split a non root left node pushing its excess right and up.
Parameter Description
1 $tree Tree definition
2 $newRight Variable offset in area of right node block
3 $PK Parent keys zmm
4 $PD Data zmm
5 $PN Nodes zmm
6 $LK Left keys zmm
7 $LD Data zmm
8 $LN Nodes zmm
9 $RK Right keys
10 $RD Data
11 $RN Node zmm
Nasm::X86::Tree::splitRoot($tree, $nLeft, $nRight, $PK, $PD, $PN, $LK, $LD, $LN, $RK, $RD, $RN)
Split a non root node into left and right nodes with the left half left in the left node and splitting key/data pushed into the parent node with the remainder pushed into the new right node
Parameter Description
1 $tree Tree definition
2 $nLeft Variable offset in area of new left node block
3 $nRight Variable offset in area of new right node block
4 $PK Parent keys zmm
5 $PD Data zmm
6 $PN Nodes zmm
7 $LK Left keys zmm
8 $LD Data zmm
9 $LN Nodes zmm
10 $RK Right keys
11 $RD Data
12 $RN Nodes zmm
Nasm::X86::Tree::zero($tree)
Zero the return fields of a tree descriptor
Parameter Description
1 $tree Tree descriptor
Nasm::X86::Tree::findAndReload($t, $key)
Find a key in the specified tree and clone it is it is a sub tree.
Parameter Description
1 $t Tree descriptor
2 $key Key as a dword
Nasm::X86::Tree::leftOrRightMost($tree, $dir, $node, $offset)
Return the offset of the left most or right most node.
Parameter Description
1 $tree Tree descriptor
2 $dir Direction: left = 0 or right = 1
3 $node Start node
4 $offset Offset of located node
Nasm::X86::Tree::leftMost($t, $node, $offset)
Return the offset of the left most node from the specified node.
Parameter Description
1 $t Tree descriptor
2 $node Start node
3 $offset Returned offset
Nasm::X86::Tree::rightMost($t, $node, $offset)
Return the offset of the left most node from the specified node.
Parameter Description
1 $t Tree descriptor
2 $node Start node
3 $offset Returned offset
Nasm::X86::Tree::isTree($t, $zmm, $point)
Set the Zero Flag to oppose the tree bit in the numbered zmm register holding the keys of a node to indicate whether the data element indicated by the specified register is an offset to a sub tree in the containing area or not.
Parameter Description
1 $t Tree descriptor
2 $zmm Numbered zmm register holding the keys for a node in the tree
3 $point Register showing point to test
Example:
my $t = DescribeTree;
Mov r8, 0b100; $t->setTreeBit(31, r8); PrintOutRegisterInHex 31;
Mov r8, 0b010; $t->setTreeBit(31, r8); PrintOutRegisterInHex 31;
Mov r8, 0b001; $t->setTreeBit(31, r8); PrintOutRegisterInHex 31;
Mov r8, 0b010; $t->clearTreeBit(31, r8); PrintOutRegisterInHex 31;
$t->getTreeBits(31, r8); V(TreeBits => r8)->outRightInBinNL(K width => 16);
Mov r8, 0b010; $t->insertZeroIntoTreeBits(31, r8); $t->getTreeBits(31, r8); V(TreeBits => r8)->outRightInBinNL(K width => 16);
Mov r8, 0b010; $t->insertOneIntoTreeBits (31, r8); $t->getTreeBits(31, r8); V(TreeBits => r8)->outRightInBinNL(K width => 16);
$t->getTreeBits(31, r8);
V(TreeBits => r8)->outRightInHexNL(K width => 4);
PrintOutRegisterInHex 31;
Mov r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Not r8; $t->setTreeBits(31, r8); PrintOutRegisterInHex 31;
ok Assemble eq => <<END, avx512=>1;
zmm31: .... .... ...4 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm31: .... .... ...6 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm31: .... .... ...7 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm31: .... .... ...5 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
101
1001
10011
13
zmm31: .... .... ..13 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
ZF=0
ZF=0
ZF=1
ZF=1
ZF=0
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
zmm31: .... .... 3FFF .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
END
Nasm::X86::Tree::getTreeBit($t, $zmm, $point, %options)
Get the tree bit from the numbered zmm at the specified point and return it in a variable as a one or a zero.
Parameter Description
1 $t Tree descriptor
2 $zmm Register showing point to test
3 $point Numbered zmm register holding the keys for a node in the tree
4 %options Options
Nasm::X86::Tree::setOrClearTreeBit($t, $set, $point, $zmm)
Set or clear the tree bit selected by the specified point in the numbered zmm register holding the keys of a node to indicate that the data element indicated by the specified register is an offset to a sub tree in the containing area.
Parameter Description
1 $t Tree descriptor
2 $set Set if true else clear
3 $point Register holding point to set
4 $zmm Numbered zmm register holding the keys for a node in the tree
Nasm::X86::Tree::setTreeBit($t, $zmm, $point)
Set the tree bit in the numbered zmm register holding the keys of a node to indicate that the data element indexed by the specified register is an offset to a sub tree in the containing area.
Parameter Description
1 $t Tree descriptor
2 $zmm Numbered zmm register holding the keys for a node in the tree
3 $point Register holding the point to clear
Nasm::X86::Tree::clearTreeBit($t, $zmm, $point)
Clear the tree bit in the numbered zmm register holding the keys of a node to indicate that the data element indexed by the specified register is an offset to a sub tree in the containing area.
Parameter Description
1 $t Tree descriptor
2 $zmm Numbered zmm register holding the keys for a node in the tree
3 $point Register holding register holding the point to set
Nasm::X86::Tree::setOrClearTreeBitToMatchContent($t, $zmm, $point, $content)
Set or clear the tree bit pointed to by the specified register depending on the content of the specified variable.
Parameter Description
1 $t Tree descriptor
2 $zmm Numbered keys zmm
3 $point Register indicating point
4 $content Content indicating zero or one
Nasm::X86::Tree::getTreeBits($t, $zmm, $register)
Load the tree bits from the numbered zmm into the specified register.
Parameter Description
1 $t Tree descriptor
2 $zmm Numbered zmm
3 $register Target register
Example:
my $t = DescribeTree;
Mov r8, 0b100; $t->setTreeBit(31, r8); PrintOutRegisterInHex 31;
Mov r8, 0b010; $t->setTreeBit(31, r8); PrintOutRegisterInHex 31;
Mov r8, 0b001; $t->setTreeBit(31, r8); PrintOutRegisterInHex 31;
Mov r8, 0b010; $t->clearTreeBit(31, r8); PrintOutRegisterInHex 31;
$t->getTreeBits(31, r8); V(TreeBits => r8)->outRightInBinNL(K width => 16);
Mov r8, 0b010; $t->insertZeroIntoTreeBits(31, r8); $t->getTreeBits(31, r8); V(TreeBits => r8)->outRightInBinNL(K width => 16);
Mov r8, 0b010; $t->insertOneIntoTreeBits (31, r8); $t->getTreeBits(31, r8); V(TreeBits => r8)->outRightInBinNL(K width => 16);
$t->getTreeBits(31, r8);
V(TreeBits => r8)->outRightInHexNL(K width => 4);
PrintOutRegisterInHex 31;
Mov r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Not r8; $t->setTreeBits(31, r8); PrintOutRegisterInHex 31;
ok Assemble eq => <<END, avx512=>1;
zmm31: .... .... ...4 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm31: .... .... ...6 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm31: .... .... ...7 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm31: .... .... ...5 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
101
1001
10011
13
zmm31: .... .... ..13 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
ZF=0
ZF=0
ZF=1
ZF=1
ZF=0
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
zmm31: .... .... 3FFF .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
END
Nasm::X86::Tree::setTreeBits($t, $zmm, $register)
Put the tree bits in the specified register into the numbered zmm.
Parameter Description
1 $t Tree descriptor
2 $zmm Numbered zmm
3 $register Target register
Example:
my $t = DescribeTree;
Mov r8, 0b100; $t->setTreeBit(31, r8); PrintOutRegisterInHex 31;
Mov r8, 0b010; $t->setTreeBit(31, r8); PrintOutRegisterInHex 31;
Mov r8, 0b001; $t->setTreeBit(31, r8); PrintOutRegisterInHex 31;
Mov r8, 0b010; $t->clearTreeBit(31, r8); PrintOutRegisterInHex 31;
$t->getTreeBits(31, r8); V(TreeBits => r8)->outRightInBinNL(K width => 16);
Mov r8, 0b010; $t->insertZeroIntoTreeBits(31, r8); $t->getTreeBits(31, r8); V(TreeBits => r8)->outRightInBinNL(K width => 16);
Mov r8, 0b010; $t->insertOneIntoTreeBits (31, r8); $t->getTreeBits(31, r8); V(TreeBits => r8)->outRightInBinNL(K width => 16);
$t->getTreeBits(31, r8);
V(TreeBits => r8)->outRightInHexNL(K width => 4);
PrintOutRegisterInHex 31;
Mov r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Not r8; $t->setTreeBits(31, r8); PrintOutRegisterInHex 31;
ok Assemble eq => <<END, avx512=>1;
zmm31: .... .... ...4 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm31: .... .... ...6 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm31: .... .... ...7 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm31: .... .... ...5 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
101
1001
10011
13
zmm31: .... .... ..13 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
ZF=0
ZF=0
ZF=1
ZF=1
ZF=0
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
zmm31: .... .... 3FFF .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
END
Nasm::X86::Tree::insertTreeBit($t, $onz, $zmm, $point)
Insert a zero or one into the tree bits field in the numbered zmm at the specified point moving the bits at and beyond point one position to the right.
Parameter Description
1 $t Tree descriptor
2 $onz 0 - zero or 1 - one
3 $zmm Numbered zmm
4 $point Register indicating point
Nasm::X86::Tree::insertZeroIntoTreeBits($t, $zmm, $point)
Insert a zero into the tree bits field in the numbered zmm at the specified point moving the bits at and beyond point one position to the right.
Parameter Description
1 $t Tree descriptor
2 $zmm Numbered zmm
3 $point Register indicating point
Example:
my $t = DescribeTree;
Mov r8, 0b100; $t->setTreeBit(31, r8); PrintOutRegisterInHex 31;
Mov r8, 0b010; $t->setTreeBit(31, r8); PrintOutRegisterInHex 31;
Mov r8, 0b001; $t->setTreeBit(31, r8); PrintOutRegisterInHex 31;
Mov r8, 0b010; $t->clearTreeBit(31, r8); PrintOutRegisterInHex 31;
$t->getTreeBits(31, r8); V(TreeBits => r8)->outRightInBinNL(K width => 16);
Mov r8, 0b010; $t->insertZeroIntoTreeBits(31, r8); $t->getTreeBits(31, r8); V(TreeBits => r8)->outRightInBinNL(K width => 16);
Mov r8, 0b010; $t->insertOneIntoTreeBits (31, r8); $t->getTreeBits(31, r8); V(TreeBits => r8)->outRightInBinNL(K width => 16);
$t->getTreeBits(31, r8);
V(TreeBits => r8)->outRightInHexNL(K width => 4);
PrintOutRegisterInHex 31;
Mov r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Not r8; $t->setTreeBits(31, r8); PrintOutRegisterInHex 31;
ok Assemble eq => <<END, avx512=>1;
zmm31: .... .... ...4 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm31: .... .... ...6 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm31: .... .... ...7 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm31: .... .... ...5 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
101
1001
10011
13
zmm31: .... .... ..13 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
ZF=0
ZF=0
ZF=1
ZF=1
ZF=0
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
zmm31: .... .... 3FFF .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
END
Nasm::X86::Tree::insertOneIntoTreeBits($t, $zmm, $point)
Insert a one into the tree bits field in the numbered zmm at the specified point moving the bits at and beyond point one position to the right.
Parameter Description
1 $t Tree descriptor
2 $zmm Numbered zmm
3 $point Register indicating point
Example:
my $t = DescribeTree;
Mov r8, 0b100; $t->setTreeBit(31, r8); PrintOutRegisterInHex 31;
Mov r8, 0b010; $t->setTreeBit(31, r8); PrintOutRegisterInHex 31;
Mov r8, 0b001; $t->setTreeBit(31, r8); PrintOutRegisterInHex 31;
Mov r8, 0b010; $t->clearTreeBit(31, r8); PrintOutRegisterInHex 31;
$t->getTreeBits(31, r8); V(TreeBits => r8)->outRightInBinNL(K width => 16);
Mov r8, 0b010; $t->insertZeroIntoTreeBits(31, r8); $t->getTreeBits(31, r8); V(TreeBits => r8)->outRightInBinNL(K width => 16);
Mov r8, 0b010; $t->insertOneIntoTreeBits (31, r8); $t->getTreeBits(31, r8); V(TreeBits => r8)->outRightInBinNL(K width => 16);
$t->getTreeBits(31, r8);
V(TreeBits => r8)->outRightInHexNL(K width => 4);
PrintOutRegisterInHex 31;
Mov r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Shl r8, 1; $t->isTree(31, r8); PrintOutZF;
Not r8; $t->setTreeBits(31, r8); PrintOutRegisterInHex 31;
ok Assemble eq => <<END, avx512=>1;
zmm31: .... .... ...4 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm31: .... .... ...6 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm31: .... .... ...7 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
zmm31: .... .... ...5 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
101
1001
10011
13
zmm31: .... .... ..13 .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
ZF=0
ZF=0
ZF=1
ZF=1
ZF=0
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
ZF=1
zmm31: .... .... 3FFF .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
END
Nasm::X86::Tree::insertIntoTreeBits($t, $zmm, $point, $content)
Insert a one into the tree bits field in the numbered zmm at the specified point moving the bits at and beyond point one position to the right.
Parameter Description
1 $t Tree descriptor
2 $zmm Numbered zmm
3 $point Register indicating point
4 $content Bit to insert
Nasm::X86::Tree::extract($tree, $point, $K, $D, $N)
Extract the key/data/node and tree bit at the specified point from the block held in the specified zmm registers.
Parameter Description
1 $tree Tree descriptor
2 $point Point at which to extract
3 $K Keys zmm
4 $D Data zmm
5 $N Node zmm
Example:
my ($K, $D, $N) = (31, 30, 29);
K(K => Rd( 1..16))->loadZmm($K);
K(K => Rd( 1..16))->loadZmm($D);
K(K => Rd(map {0} 1..16))->loadZmm($N);
my $a = CreateArea;
my $t = $a->CreateTree;
my $p = K(one => 1) << K three => 3;
Mov r15, 0xAAAA;
$t->setTreeBits($K, r15);
PrintOutStringNL "Start";
PrintOutRegisterInHex 31, 30, 29;
$t->extract($p, $K, $D, $N);
PrintOutStringNL "Finish";
PrintOutRegisterInHex 31, 30, 29;
ok Assemble eq => <<END, avx512=>1;
Start
zmm31: .... ..10 2AAA ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm29: .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
Finish
zmm31: .... ..10 2AAA ...E .... ...E .... ...E - .... ...D .... ...C .... ...B .... ...A + .... ...9 .... ...8 .... ...7 .... ...6 - .... ...5 .... ...3 .... ...2 .... ...1
zmm30: .... ..10 .... ...F .... ...E .... ...E - .... ...D .... ...C .... ...B .... ...A + .... ...9 .... ...8 .... ...7 .... ...6 - .... ...5 .... ...3 .... ...2 .... ...1
zmm29: .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
END
Nasm::X86::Tree::extractFirst($tree, $K, $D, $N)
Extract the first key/data and tree bit at the specified point from the block held in the specified zmm registers and place the extracted data/bit in tree data/subTree.
Parameter Description
1 $tree Tree descriptor
2 $K Keys zmm
3 $D Data zmm
4 $N Node zmm
Example:
my ($K, $D, $N) = (31, 30, 29);
K(K => Rd( 1..16)) ->loadZmm($K);
K(K => Rd( 1..16)) ->loadZmm($D);
K(K => Rd(map {0} 1..16))->loadZmm($N);
my $a = CreateArea;
my $t = $a->CreateTree;
my $p = K(one => 1) << K three => 3;
Mov r15, 0xAAAA;
$t->setTreeBits($K, r15);
PrintOutStringNL "Start";
PrintOutRegisterInHex 31, 30, 29;
K(n=>4)->for(sub
{my ($index, $start, $next, $end) = @_;
$t->extractFirst($K, $D, $N);
PrintOutStringNL "-------------";
$index->outNL;
PrintOutRegisterInHex 31, 30, 29;
$t->data->outNL;
$t->subTree->outNL;
$t->lengthFromKeys($K)->outNL;
});
ok Assemble eq => <<END, avx512=>1;
Start
zmm31: .... ..10 2AAA ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm30: .... ..10 .... ...F .... ...E .... ...D - .... ...C .... ...B .... ...A .... ...9 + .... ...8 .... ...7 .... ...6 .... ...5 - .... ...4 .... ...3 .... ...2 .... ...1
zmm29: .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
-------------
index: .... .... .... ....
zmm31: .... ..10 1555 ...E .... ...E .... ...E - .... ...D .... ...C .... ...B .... ...A + .... ...9 .... ...8 .... ...7 .... ...6 - .... ...5 .... ...4 .... ...3 .... ...2
zmm30: .... ..10 .... ...F .... ...E .... ...E - .... ...D .... ...C .... ...B .... ...A + .... ...9 .... ...8 .... ...7 .... ...6 - .... ...5 .... ...4 .... ...3 .... ...2
zmm29: .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
data: .... .... .... ...1
subTree: .... .... .... ....
b at offset 56 in zmm31: .... .... .... ...E
-------------
index: .... .... .... ...1
zmm31: .... ..10 .AAA ...D .... ...E .... ...E - .... ...E .... ...D .... ...C .... ...B + .... ...A .... ...9 .... ...8 .... ...7 - .... ...6 .... ...5 .... ...4 .... ...3
zmm30: .... ..10 .... ...F .... ...E .... ...E - .... ...E .... ...D .... ...C .... ...B + .... ...A .... ...9 .... ...8 .... ...7 - .... ...6 .... ...5 .... ...4 .... ...3
zmm29: .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
data: .... .... .... ...2
subTree: .... .... .... ...1
b at offset 56 in zmm31: .... .... .... ...D
-------------
index: .... .... .... ...2
zmm31: .... ..10 .555 ...C .... ...E .... ...E - .... ...E .... ...E .... ...D .... ...C + .... ...B .... ...A .... ...9 .... ...8 - .... ...7 .... ...6 .... ...5 .... ...4
zmm30: .... ..10 .... ...F .... ...E .... ...E - .... ...E .... ...E .... ...D .... ...C + .... ...B .... ...A .... ...9 .... ...8 - .... ...7 .... ...6 .... ...5 .... ...4
zmm29: .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
data: .... .... .... ...3
subTree: .... .... .... ....
b at offset 56 in zmm31: .... .... .... ...C
-------------
index: .... .... .... ...3
zmm31: .... ..10 .2AA ...B .... ...E .... ...E - .... ...E .... ...E .... ...E .... ...D + .... ...C .... ...B .... ...A .... ...9 - .... ...8 .... ...7 .... ...6 .... ...5
zmm30: .... ..10 .... ...F .... ...E .... ...E - .... ...E .... ...E .... ...E .... ...D + .... ...C .... ...B .... ...A .... ...9 - .... ...8 .... ...7 .... ...6 .... ...5
zmm29: .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... .... + .... .... .... .... .... .... .... .... - .... .... .... .... .... .... .... ....
data: .... .... .... ...4
subTree: .... .... .... ...1
b at offset 56 in zmm31: .... .... .... ...B
END
Nasm::X86::Tree::mergeOrSteal($tree, $offset)
Merge the block at the specified offset with its right sibling or steal from it. If there is no right sibling then do the same thing but with the left sibling. The supplied block must not be the root. The key we are looking for must be in the tree key field.
Parameter Description
1 $tree Tree descriptor
2 $offset Offset of non root block that might need to merge or steal
Nasm::X86::Tree::stealFromRight($tree, $PK, $PD, $PN, $LK, $LD, $LN, $RK, $RD, $RN)
Steal one key from the node on the right where the current left node,parent node and right node are held in zmm registers and return one if the steal was performed, else zero.
Parameter Description
1 $tree Tree definition
2 $PK Parent keys zmm
3 $PD Data zmm
4 $PN Nodes zmm
5 $LK Left keys zmm
6 $LD Data zmm
7 $LN Nodes zmm
8 $RK Right keys
9 $RD Data
10 $RN Nodes zmm.
Nasm::X86::Tree::stealFromLeft($tree, $PK, $PD, $PN, $LK, $LD, $LN, $RK, $RD, $RN)
Steal one key from the node on the left where the current left node,parent node and right node are held in zmm registers and return one if the steal was performed, else zero.
Parameter Description
1 $tree Tree definition
2 $PK Parent keys zmm
3 $PD Data zmm
4 $PN Nodes zmm
5 $LK Left keys zmm
6 $LD Data zmm
7 $LN Nodes zmm
8 $RK Right keys
9 $RD Data
10 $RN Nodes zmm.
Nasm::X86::Tree::merge($tree, $PK, $PD, $PN, $LK, $LD, $LN, $RK, $RD, $RN)
Merge a left and right node if they are at minimum size.
Parameter Description
1 $tree Tree definition
2 $PK Parent keys zmm
3 $PD Data zmm
4 $PN Nodes zmm
5 $LK Left keys zmm
6 $LD Data zmm
7 $LN Nodes zmm
8 $RK Right keys
9 $RD Data
10 $RN Nodes zmm.
Nasm::X86::Tree::deleteFirstKeyAndData($tree, $K, $D)
Delete the first element of a leaf mode returning its characteristics in the calling tree descriptor.
Parameter Description
1 $tree Tree definition
2 $K Keys zmm
3 $D Data zmm
Nasm::X86::Tree::push($tree, $data)
Push a data value onto a tree. If the data is a reference to a tree then the offset of the first block of the tree is pushed.
Parameter Description
1 $tree Tree descriptor
2 $data Variable data
Example:
my $a = CreateArea;
my $t = $a->CreateTree;
my $N = K loop => 16;
$N->for(sub
{my ($i) = @_;
$t->push($i);
});
$t->peek(K key => 1)->data ->outNL;
$t->peek(K key => 2)->data ->outNL;
$t->peek(K key => 3)->found->outNL;
$t->peek(2 * $N )->found->outNL;
$t->size->outNL;
$t->get(K(key => 8)); $t->found->out("f: ", " "); $t->key->out("i: ", " "); $t->data->outNL;
$N->for(sub
{my ($i) = @_;
$t->pop; $t->found->out("f: ", " "); $t->key->out("i: ", " "); $t->data->outNL;
});
$t->pop; $t->found->outNL("f: ");
ok Assemble eq => <<END, avx512=>1;
data: .... .... .... ...F
data: .... .... .... ...E
found: .... .... .... ..40
found: .... .... .... ....
size of tree: .... .... .... ..10
f: .... .... .... ...2 i: .... .... .... ...8 data: .... .... .... ...8
f: .... .... .... ...1 i: .... .... .... ...F data: .... .... .... ...F
f: .... .... .... ...1 i: .... .... .... ...E data: .... .... .... ...E
f: .... .... .... ...1 i: .... .... .... ...D data: .... .... .... ...D
f: .... .... .... ...1 i: .... .... .... ...C data: .... .... .... ...C
f: .... .... .... ...1 i: .... .... .... ...B data: .... .... .... ...B
f: .... .... .... ...1 i: .... .... .... ...A data: .... .... .... ...A
f: .... .... .... ...1 i: .... .... .... ...9 data: .... .... .... ...9
f: .... .... .... ...1 i: .... .... .... ...8 data: .... .... .... ...8
f: .... .... .... ...1 i: .... .... .... ...7 data: .... .... .... ...7
f: .... .... .... ...1 i: .... .... .... ...6 data: .... .... .... ...6
f: .... .... .... ...1 i: .... .... .... ...5 data: .... .... .... ...5
f: .... .... .... ...1 i: .... .... .... ...4 data: .... .... .... ...4
f: .... .... .... ...1 i: .... .... .... ...3 data: .... .... .... ...3
f: .... .... .... ...1 i: .... .... .... ...2 data: .... .... .... ...2
f: .... .... .... ...1 i: .... .... .... ...1 data: .... .... .... ...1
f: .... .... .... ...1 i: .... .... .... .... data: .... .... .... ....
f: .... .... .... ....
END
my $b = Rb(0x41..0x51);
my $a = CreateArea;
my $T;
for my $i(1..8)
{my $t = $a->CreateTree;
$t->appendAscii(K(address=> $b), K(size => 1));
$t->push($T) if $T;
$T = $t;
}
$T->dump8xx("T");
ok Assemble eq => <<END, avx512=>1, trace=>0;
T
Tree: .... .... .... .740
At: 780 length: 2, data: 7C0, nodes: 800, first: 740, root, leaf, trees: 10
Index: 0 1
Keys : 0 1
Data : 41 64*
Tree: 640
At: 680 length: 2, data: 6C0, nodes: 700, first: 640, root, leaf, trees: 10
Index: 0 1
Keys : 0 1
Data : 41 54*
Tree: 540
At: 580 length: 2, data: 5C0, nodes: 600, first: 540, root, leaf, trees: 10
Index: 0 1
Keys : 0 1
Data : 41 44*
Tree: 440
At: 480 length: 2, data: 4C0, nodes: 500, first: 440, root, leaf, trees: 10
Index: 0 1
Keys : 0 1
Data : 41 34*
Tree: 340
At: 380 length: 2, data: 3C0, nodes: 400, first: 340, root, leaf, trees: 10
Index: 0 1
Keys : 0 1
Data : 41 24*
Tree: 240
At: 280 length: 2, data: 2C0, nodes: 300, first: 240, root, leaf, trees: 10
Index: 0 1
Keys : 0 1
Data : 41 14*
Tree: 140
At: 180 length: 2, data: 1C0, nodes: 200, first: 140, root, leaf, trees: 10
Index: 0 1
Keys : 0 1
Data : 41 4*
Tree: 40
At: 80 length: 1, data: C0, nodes: 100, first: 40, root, leaf
Index: 0
Keys : 0
Data : 41
end
end
end
end
end
end
end
end
END
Nasm::X86::Tree::dumpWithWidth($tree, $title, $width, $margin, $first, $keyX, $dataX)
Dump a tree and all its sub trees.
Parameter Description
1 $tree Tree
2 $title Title
3 $width Width of offset field
4 $margin The maximum width of the indented area
5 $first Whether to print the offset of the tree
6 $keyX Whether to print the key field in hex or decimal
7 $dataX Whether to print the data field in hex or decimal
Nasm::X86::Tree::dump($tree, $title)
Dump a tree and all its sub trees.
Parameter Description
1 $tree Tree
2 $title Title
Nasm::X86::Tree::dump8($tree, $title)
Dump a tree and all its sub trees using 8 character fields for numbers.
Parameter Description
1 $tree Tree
2 $title Title
Nasm::X86::Tree::dump8xx($tree, $title)
Dump a tree and all its sub trees using 8 character fields for numbers printing the keys and data in hexadecimal.
Parameter Description
1 $tree Tree
2 $title Title
LocateIntelEmulator()
Locate the Intel Software Development Emulator.
getInstructionCount()
Get the number of instructions executed from the emulator mix file.
OptimizePopPush(%options)
Perform code optimizations.
Parameter Description
1 %options Options
OptimizeReload(%options)
Reload: a = b; b = a; remove second - as redundant
Parameter Description
1 %options Options
hasAvx512()
Check whether the current device has avx512 instructions or not
totalBytesAssembled()
Total size in bytes of all files assembled during testing.
ParseUnisyn($compose, $text, $parse)
Test the parse of a unisyn expression
Parameter Description
1 $compose The composing expression used to create a unisyn expression
2 $text The expected composed expression
3 $parse The expected parse tree
Nasm::X86::Tree::intersectionOfStringTrees($tree, $Tree)
Find the intersection of two string trees. The result is a tree that maps the values of teh forst tree to those of the second tree whenever they have a string in common. This is mapping because bot the keys and the data values are unique.
Parameter Description
1 $tree First tree
2 $Tree Second tree
Index
1 AllocateMemory - Allocate the variable specified amount of memory via mmap and return its address as a variable.
2 AndBlock - Short circuit and: execute a block of code to test conditions which, if all of them pass, allows the first block to continue successfully else if one of the conditions fails we execute the optional fail block.
3 Assemble - Assemble the generated code.
4 bFromX - Get the byte from the numbered xmm register and return it in a variable.
5 bFromZ - Get the byte from the numbered zmm register and return it in a variable.
6 Block - Execute a block of code with labels supplied for the start and end of this code
7 bRegFromZmm - Load the specified register from the byte at the specified offset located in the numbered zmm.
8 bRegIntoZmm - Put the byte content of the specified register into the byte in the numbered zmm at the specified offset in the zmm.
9 CallC - Call a C subroutine.
10 CheckIfMaskRegisterNumber - Check that a register is in fact a mask register.
11 CheckMaskRegister - Check that a register is in fact a numbered mask register
12 CheckMaskRegisterNumber - Check that a register is in fact a mask register and confess if it is not.
13 checkZmmRegister - Check that a register is a zmm register
14 ChooseRegisters - Choose the specified numbers of registers excluding those on the specified list.
15 ClassifyInRange - Character classification: classify the utf32 characters in a block of memory of specified length using a range specification held in zmm0, zmm1 formatted in double words with each double word in zmm0 having the classification in the highest 8 bits and with zmm0 and zmm1 having the utf32 character at the start (zmm0) and end (zmm1) of each range in the lowest 18 bits.
16 ClassifyRange - Implementation of ClassifyInRange and ClassifyWithinRange.
17 ClassifyWithInRange - Bracket classification: Classify the utf32 characters in a block of memory of specified length using a range specification held in zmm0, zmm1 formatted in double words with the classification range in the high byte of each dword in zmm0 and the utf32 character at the start (zmm0) and end (zmm1) of each range in the lower 18 bits of each dword.
18 ClassifyWithInRangeAndSaveOffset - Alphabetic classification: classify the utf32 characters in a block of memory of specified length using a range specification held in zmm0, zmm1 formatted in double words with the classification code in the highest byte of each double word in zmm0 and the offset of the first element in the range in the highest byte of each dword in zmm1.
19 ClassifyWithInRangeAndSaveWordOffset - Alphabetic classification: classify the utf32 characters in a block of memory of specified length using a range specification held in zmm0, zmm1, zmm2 formatted in double words.
20 ClearMemory - Clear memory with a variable address and variable length
21 ClearRegisters - Clear registers by setting them to zero.
22 ClearZF - Clear the zero flag.
23 CloseFile - Close the file whose descriptor is in rax.
24 Comment - Insert a comment into the assembly code.
25 CommentWithTraceBack - Insert a comment into the assembly code with a traceback showing how it was generated.
26 constantString - Return the address and length of a constant string as two variables.
27 convert_rax_from_utf32_to_utf8 - Convert a utf32 character held in rax to a utf8 character held in rax
28 ConvertUtf8ToUtf32 - Convert an allocated block string of utf8 to an allocated block of utf32 and return its address and length.
29 CopyMemory - Copy memory.
30 CopyMemory4K - Copy memory in 4K byte blocks.
31 CopyMemory64 - Copy memory in 64 byte blocks.
32 copyStructureMinusVariables - Copy a non recursive structure ignoring variables
33 countComments - Count the number of comments in the text of the program so we can see what code is being generated too often
34 CreateArea - Create an relocatable area and returns its address in rax.
35 createBitNumberFromAlternatingPattern - Create a number from a bit pattern.
36 Cstrlen - Length of the C style string addressed by rax returning the length in r15.
37 Db - Layout bytes in the data segment and return their label.
38 Dbwdq - Layout data.
39 DComment - Insert a comment into the data segment.
40 Dd - Layout double words in the data segment and return their label.
41 DescribeArea - Describe a relocatable area.
42 DescribeTree - Return a descriptor for a tree with the specified options.
43 dFromPointInZ - Get the double word from the numbered zmm register at a point specified by the variable or register and return it in a variable.
44 dFromX - Get the double word from the numbered xmm register and return it in a variable.
45 dFromZ - Get the double word from the numbered zmm register and return it in a variable.
46 Dq - Layout quad words in the data segment and return their label.
47 Ds - Layout bytes in memory and return their label.
48 Dw - Layout words in the data segment and return their label.
49 Ef - Else if block for an If statement.
50 Else - Else block for an If statement.
51 executeFileViaBash - Execute the file named in a variable
52 Exit - Exit with the specified return code or zero if no return code supplied.
53 Extern - Name external references.
54 extractRegisterNumberFromMM - Extract the register number from an *mm register
55 Fail - Fail block for an AndBlock.
56 fixMixOutput - Fix mix output so we know where the code comes from in the source file
57 For - For - iterate the block as long as register is less than limit incrementing by increment each time.
58 ForEver - Iterate for ever.
59 ForIn - For - iterate the full block as long as register plus increment is less than than limit incrementing by increment each time then increment the last block for the last non full block.
60 Fork - Fork: create and execute a copy of the current process.
61 FreeMemory - Free memory specified by variables.
62 getBwdqFromMm - Get the numbered byte|word|double word|quad word from the numbered zmm register and return it in a variable.
63 getInstructionCount - Get the number of instructions executed from the emulator mix file.
64 GetNextUtf8CharAsUtf32 - Get the next UTF-8 encoded character from the addressed memory and return it as a UTF-32 char.
65 GetPid - Get process identifier.
66 GetPidInHex - Get process identifier in hex as 8 zero terminated bytes in rax.
67 GetPPid - Get parent process identifier.
68 GetUid - Get userid of current process.
69 hasAvx512 - Check whether the current device has avx512 instructions or not
70 Hash - Hash a string addressed by rax with length held in rdi and return the hash code in r15.
71 hexTranslateTable - Create/address a hex translate table and return its label.
72 If - If statement.
73 ifAnd - Execute then or else block based on a multiplicity of AND conditions executed until one fails.
74 IfC - If the carry flag is set then execute the then block else the else block.
75 IfEq - If equal execute the then block else the else block.
76 IfGe - If greater than or equal execute the then block else the else block.
77 IfGt - If greater than execute the then block else the else block.
78 IfLe - If less than or equal execute the then block else the else block.
79 IfLt - If less than execute the then block else the else block.
80 IfNc - If the carry flag is not set then execute the then block else the else block.
81 IfNe - If not equal execute the then block else the else block.
82 IfNs - If signed less than execute the then block else the else block.
83 IfNz - If the zero flag is not set then execute the then block else the else block.
84 ifOr - Execute then or else block based on a multiplicity of OR conditions executed until one succeeds.
85 IfS - If signed greater than or equal execute the then block else the else block.
86 IfZ - If the zero flag is set then execute the then block else the else block.
87 InsertOneIntoRegisterAtPoint - Insert a one into the specified register at the point indicated by another register.
88 InsertZeroIntoRegisterAtPoint - Insert a zero into the specified register at the point indicated by another general purpose or mask register moving the higher bits one position to the left.
89 K - Define a constant variable.
90 Label - Create a unique label or reuse the one supplied.
91 lineNumbersToSubNamesFromSource - Create a hash mapping line numbers to subroutine definitions
92 Link - Libraries to link with.
93 loadAreaIntoThing - Load an area into the current assembly and return a descriptor for it.
94 LoadBitsIntoMaskRegister - Load a bit string specification into a mask register in two clocks.
95 LoadConstantIntoMaskRegister - Set a mask register equal to a constant.
96 LoadRegFromMm - Load the specified register from the numbered zmm at the quad offset specified as a constant number.
97 LoadZmm - Load a numbered zmm with the specified bytes.
98 LocateIntelEmulator - Locate the Intel Software Development Emulator.
99 locateRunTimeErrorInDebugTraceOutput - Locate the traceback of the last known good position in the trace file before the error occurred
100 Nasm::X86::Area::allocate - Allocate the variable amount of space in the variable addressed area and return the offset of the allocation in the area as a variable.
101 Nasm::X86::Area::allocZmmBlock - Allocate a block to hold a zmm register in the specified area and return the offset of the block as a variable.
102 Nasm::X86::Area::allocZmmBlock3 - Allocate three zmm blocks in one go and return their offsets
103 Nasm::X86::Area::append - Append one area to another.
104 Nasm::X86::Area::appendMemory - Append the variable addressed content in memory of variable size to the specified area.
105 Nasm::X86::Area::char - Append a character expressed as a decimal number to the specified area.
106 Nasm::X86::Area::checkYggdrasilCreated - Return a tree descriptor for the Yggdrasil world tree for an area.
107 Nasm::X86::Area::clear - Clear an area but keep it at the same size.
108 Nasm::X86::Area::clearZmmBlock - Clear the zmm block at the specified offset in the area
109 Nasm::X86::Area::CreateTree - Create a tree in an area.
110 Nasm::X86::Area::DescribeTree - Return a descriptor for a tree in the specified area with the specified options.
111 Nasm::X86::Area::dump - Dump details of an area.
112 Nasm::X86::Area::free - Free an area
113 Nasm::X86::Area::freeChainSpace - Count the number of blocks available on the free chain
114 Nasm::X86::Area::freeZmmBlock - Free a block in an area by placing it on the free chain.
115 Nasm::X86::Area::getZmmBlock - Get the block with the specified offset in the specified string and return it in the numbered zmm.
116 Nasm::X86::Area::makeReadOnly - Make an area read only.
117 Nasm::X86::Area::makeWriteable - Make an area writable.
118 Nasm::X86::Area::nl - Append a new line to the area addressed by rax.
119 Nasm::X86::Area::out - Print the specified area on sysout.
120 Nasm::X86::Area::outNL - Print the specified area on sysout followed by a new line.
121 Nasm::X86::Area::ParseUnisyn - Parse a string of utf8 characters
122 Nasm::X86::Area::printOut - Print part of the specified area on sysout.
123 Nasm::X86::Area::putZmmBlock - Write the numbered zmm to the block at the specified offset in the specified area.
124 Nasm::X86::Area::q - Append a constant string to the area.
125 Nasm::X86::Area::ql - Append a quoted string containing new line characters to the specified area.
126 Nasm::X86::Area::read - Read a file specified by a variable addressed zero terminated string and append its content to the specified area.
127 Nasm::X86::Area::size - Get the size of an area as a variable.
128 Nasm::X86::Area::sub - Obtain the address of a subroutine held in an area from its name held in memory as a variable string.
129 Nasm::X86::Area::subFromConstantString - Obtain the address of the subroutine held in an area from a constant string.
130 Nasm::X86::Area::subroutineDefinition - Get the definition of a subroutine from an area.
131 Nasm::X86::Area::treeFromString - Create a tree from a string of bytes held at a variable address with a variable length and return the resulting tree.
132 Nasm::X86::Area::updateSpace - Make sure that a variable addressed area has enough space to accommodate content of a variable size.
133 Nasm::X86::Area::used - Return the currently used size of an area as a variable.
134 Nasm::X86::Area::write - Write the content of the specified area to a file specified by a zero terminated string.
135 Nasm::X86::Area::yggdrasil - Return a tree descriptor to the Yggdrasil world tree for an area creating the world tree Yggdrasil if it has not already been created.
136 Nasm::X86::Area::zero - Append a trailing zero to the area addressed by rax.
137 Nasm::X86::Subroutine::call - Call a sub optionally passing it parameters.
138 Nasm::X86::Subroutine::inline - Call a sub by in-lining it, optionally passing it parameters.
139 Nasm::X86::Subroutine::mapStructureVariables - Find the paths to variables in the copies of the structures passed as parameters and replace those variables with references so that in the subroutine we can refer to these variables regardless of where they are actually defined
140 Nasm::X86::Subroutine::uploadStructureVariablesToNewStackFrame - Create references to variables in parameter structures from variables in the stack frame of the subroutine.
141 Nasm::X86::Subroutine::uploadToNewStackFrame - Map a variable in the current stack into a reference in the next stack frame being the one that will be used by this sub
142 Nasm::X86::Subroutine::validateParameters - Check that the parameters and structures presented in a call to a subroutine math those defined for the subroutine.
143 Nasm::X86::Subroutine::writeToArea - Write a subroutine and its sub routines to an area then save the area in a file so that the subroutine can be reloaded at a later date either as separate file or via incorporation into a thing.
144 Nasm::X86::Tree::allocBlock - Allocate a keys/data/node block and place it in the numbered zmm registers.
145 Nasm::X86::Tree::append - Append the second source string to the first target string renumbering the keys of the source string to follow on from those of the target string.
146 Nasm::X86::Tree::appendAscii - Append ascii bytes in memory to a tree acting as a string.
147 Nasm::X86::Tree::by - Call the specified block with each element of the specified tree in ascending order.
148 Nasm::X86::Tree::clear - Delete everything in the tree recording the memory so liberated to the free chain for reuse by other trees.
149 Nasm::X86::Tree::clearTreeBit - Clear the tree bit in the numbered zmm register holding the keys of a node to indicate that the data element indexed by the specified register is an offset to a sub tree in the containing area.
150 Nasm::X86::Tree::clone - Clone a string.
151 Nasm::X86::Tree::cloneAndDown - Use the current find result held in data to position a new sub tree on the referenced subtree at the next level down.
152 Nasm::X86::Tree::cloneDescriptor - Clone the descriptor of a tree to make a new tree descriptor
153 Nasm::X86::Tree::copyDescription - Make a copy of a tree descriptor
154 Nasm::X86::Tree::copyDescriptor - Copy the description of one tree into another
155 Nasm::X86::Tree::dec - Pop from the tree if it is being used as a stack
156 Nasm::X86::Tree::decLengthInKeys - Decrement the number of keys in a keys block or complain if such is not possible
157 Nasm::X86::Tree::decSize - Decrement the size of a tree
158 Nasm::X86::Tree::decSizeInFirst - Decrement the size field in the first block of a tree when the first block is held in a zmm register.
159 Nasm::X86::Tree::delete - Find a key in a tree and delete it
160 Nasm::X86::Tree::deleteFirstKeyAndData - Delete the first element of a leaf mode returning its characteristics in the calling tree descriptor.
161 Nasm::X86::Tree::depth - Return the depth of a node within a tree.
162 Nasm::X86::Tree::describeTree - Create a description of a tree
163 Nasm::X86::Tree::down - Use the current find result held in data to position on the referenced subtree at the next level down.
164 Nasm::X86::Tree::dump - Dump a tree and all its sub trees.
165 Nasm::X86::Tree::dump8 - Dump a tree and all its sub trees using 8 character fields for numbers.
166 Nasm::X86::Tree::dump8xx - Dump a tree and all its sub trees using 8 character fields for numbers printing the keys and data in hexadecimal.
167 Nasm::X86::Tree::dumpParseTree - Dump a parse tree
168 Nasm::X86::Tree::dumpWithWidth - Dump a tree and all its sub trees.
169 Nasm::X86::Tree::expand - Expand the node at the specified offset in the specified tree if it needs to be expanded and is not the root node (which cannot be expanded because it has no siblings to take substance from whereas as all other nodes do).
170 Nasm::X86::Tree::extract - Extract the key/data/node and tree bit at the specified point from the block held in the specified zmm registers.
171 Nasm::X86::Tree::extractFirst - Extract the first key/data and tree bit at the specified point from the block held in the specified zmm registers and place the extracted data/bit in tree data/subTree.
172 Nasm::X86::Tree::find - Find a key in a tree and tests whether the found data is a sub tree.
173 Nasm::X86::Tree::findAndReload - Find a key in the specified tree and clone it is it is a sub tree.
174 Nasm::X86::Tree::findFirst - Find the first element in a tree and set found|key|data|subTree to show the result
175 Nasm::X86::Tree::findLast - Find the last key in a tree
176 Nasm::X86::Tree::findNext - Find the next key greater than the one specified.
177 Nasm::X86::Tree::findPrev - Find the previous key less than the one specified.
178 Nasm::X86::Tree::findSubTree - Find a key in the specified tree and create a sub tree from the data field if possible
179 Nasm::X86::Tree::firstFromMemory - Load the first block for a tree into the numbered zmm.
180 Nasm::X86::Tree::firstIntoMemory - Save the first block of a tree in the numbered zmm back into memory.
181 Nasm::X86::Tree::firstNode - Return as a variable the last node block in the specified tree node held in a zmm
182 Nasm::X86::Tree::free - Free all the memory used by a tree
183 Nasm::X86::Tree::freeBlock - Free a keys/data/node block whose keys block entry is located at the specified offset.
184 Nasm::X86::Tree::get - Retrieves the element at the specified zero based index in the stack.
185 Nasm::X86::Tree::get2 - Especially useful for Yggdrasil: gets the data associated with the pair of keys used to place it with put2().
186 Nasm::X86::Tree::getBlock - Get the keys, data and child nodes for a tree node from the specified offset in the area for the tree.
187 Nasm::X86::Tree::getKeyString - Especially useful for Yggdrasil: locates a string tree by key then locates a string in that string tree if both the key and the string exist.
188 Nasm::X86::Tree::getLoop - Return the value of the loop field as a variable.
189 Nasm::X86::Tree::getString - Locate the tree in a string tree representing the specified string but only if it is present and return its data in found and data.
190 Nasm::X86::Tree::getStringFromMemory - Locate the tree in a string tree representing the specified string but only if it is present and return its data in found and data.
191 Nasm::X86::Tree::getTreeBit - Get the tree bit from the numbered zmm at the specified point and return it in a variable as a one or a zero.
192 Nasm::X86::Tree::getTreeBits - Load the tree bits from the numbered zmm into the specified register.
193 Nasm::X86::Tree::incLengthInKeys - Increment the number of keys in a keys block or complain if such is not possible
194 Nasm::X86::Tree::incSize - Increment the size of a tree
195 Nasm::X86::Tree::incSizeInFirst - Increment the size field in the first block of a tree when the first block is held in a zmm register.
196 Nasm::X86::Tree::indexEq - Return the position of a key in a zmm equal to the specified key as a point in a variable.
197 Nasm::X86::Tree::indexNode - Return, as a variable, the point mask obtained by testing the nodes in a block for specified offset.
198 Nasm::X86::Tree::indexXX - Return, as a variable, the mask obtained by performing a specified comparison on the key area of a node against a specified key.
199 Nasm::X86::Tree::insertIntoTreeBits - Insert a one into the tree bits field in the numbered zmm at the specified point moving the bits at and beyond point one position to the right.
200 Nasm::X86::Tree::insertionPoint - Return the position at which a key should be inserted into a zmm as a point in a variable.
201 Nasm::X86::Tree::insertKeyDataTreeIntoLeaf - Insert a new key/data/sub tree triple into a set of zmm registers if there is room, increment the length of the node and set the tree bit as indicated and increment the number of elements in the tree.
202 Nasm::X86::Tree::insertOneIntoTreeBits - Insert a one into the tree bits field in the numbered zmm at the specified point moving the bits at and beyond point one position to the right.
203 Nasm::X86::Tree::insertTreeBit - Insert a zero or one into the tree bits field in the numbered zmm at the specified point moving the bits at and beyond point one position to the right.
204 Nasm::X86::Tree::insertZeroIntoTreeBits - Insert a zero into the tree bits field in the numbered zmm at the specified point moving the bits at and beyond point one position to the right.
205 Nasm::X86::Tree::intersection - Given a tree of trees consider each sub tree as a set and form the intersection of all these sets as a new tree
206 Nasm::X86::Tree::intersectionOfStringTrees - Find the intersection of two string trees.
207 Nasm::X86::Tree::isTree - Set the Zero Flag to oppose the tree bit in the numbered zmm register holding the keys of a node to indicate whether the data element indicated by the specified register is an offset to a sub tree in the containing area or not.
208 Nasm::X86::Tree::lastNode - Return as a variable the last node block in the specified tree node held in a zmm
209 Nasm::X86::Tree::leafFromNodes - Return a variable containing true if we are on a leaf.
210 Nasm::X86::Tree::leftMost - Return the offset of the left most node from the specified node.
211 Nasm::X86::Tree::leftOrRightMost - Return the offset of the left most or right most node.
212 Nasm::X86::Tree::lengthFromKeys - Get the length of the keys block in the numbered zmm and return it as a variable.
213 Nasm::X86::Tree::lengthIntoKeys - Get the length of the block in the numbered zmm from the specified variable.
214 Nasm::X86::Tree::maskForFullKeyArea - Place a mask for the full key area in the numbered mask register
215 Nasm::X86::Tree::maskForFullNodesArea - Place a mask for the full nodes area in the numbered mask register
216 Nasm::X86::Tree::merge - Merge a left and right node if they are at minimum size.
217 Nasm::X86::Tree::mergeOrSteal - Merge the block at the specified offset with its right sibling or steal from it.
218 Nasm::X86::Tree::nextNode - Return as a variable the next node block offset after the specified one in the specified zmm
219 Nasm::X86::Tree::outAsUtf8 - Print the data values of the specified string on stdout assuming each data value is a utf32 character and that the output device supports utf8
220 Nasm::X86::Tree::outAsUtf8NL - Print the data values of the specified string on stdout assuming each data value is a utf32 character and that the output device supports utf8.
221 Nasm::X86::Tree::overWriteKeyDataTreeInLeaf - Over write an existing key/data/sub tree triple in a set of zmm registers and set the tree bit as indicated.
222 Nasm::X86::Tree::peek - Peek at the element the specified distance back from the top of the stack and return its value in data and found status in found in the tree descriptor.
223 Nasm::X86::Tree::peekSubTree - Pop the last value out of a tree and return a tree descriptor positioned on it with the first/found fields set.
224 Nasm::X86::Tree::plusAssign - Use plus to push an element to a tree being used as a stack
225 Nasm::X86::Tree::pop - Pop the last value out of a tree and return the key/data/subTree in the tree descriptor.
226 Nasm::X86::Tree::popSubTree - Pop the last value out of a tree and return a tree descriptor positioned on it with the first/found fields set.
227 Nasm::X86::Tree::position - Create a new tree description for a tree positioned at the specified location
228 Nasm::X86::Tree::prevNode - Return as a variable the previous node block offset after the specified one in the specified zmm
229 Nasm::X86::Tree::printInOrder - Print a tree in order
230 Nasm::X86::Tree::push - Push a data value onto a tree.
231 Nasm::X86::Tree::put - Put a variable key and data into a tree.
232 Nasm::X86::Tree::put2 - Especially useful for Yggdrasil: puts a key into a tree if it is not already there and puts a sub tree under it into which the following key, data pair is place.
233 Nasm::X86::Tree::putBlock - Put a tree block held in three zmm registers back into the area holding the tree at the specified offset.
234 Nasm::X86::Tree::putKeyString - Especially useful for Yggdrasil: puts a key into a tree if it is not already there then puts a string into the sub string tree and return the unique number for the string.
235 Nasm::X86::Tree::putLoop - Set the value of the loop field from a variable.
236 Nasm::X86::Tree::putString - Enter a string tree into a tree of strings and return the offset of the last inserted tree as the unique number of this string.
237 Nasm::X86::Tree::putStringFromMemory - Enter a string in memory into a tree of strings and return the offset of the last inserted tree as the unique number of this string.
238 Nasm::X86::Tree::relativeNode - Return as a variable a node offset relative (specified as ac constant) to another offset in the same node in the specified zmm
239 Nasm::X86::Tree::replace - Replace the key/data/subTree at the specified point in the specified zmm with the values found in the tree key/data/sub tree fields.
240 Nasm::X86::Tree::reposition - Reposition an existing tree at the specified location
241 Nasm::X86::Tree::reverse - Create a clone of the string in reverse order
242 Nasm::X86::Tree::rightMost - Return the offset of the left most node from the specified node.
243 Nasm::X86::Tree::root - Check whether the specified offset refers to the root of a tree when the first block is held in a zmm register.
244 Nasm::X86::Tree::rootFromFirst - Return a variable containing the offset of the root block of a tree from the first block when held in a zmm register.
245 Nasm::X86::Tree::rootIntoFirst - Put the contents of a variable into the root field of the first block of a tree when held in a zmm register.
246 Nasm::X86::Tree::setOrClearTreeBit - Set or clear the tree bit selected by the specified point in the numbered zmm register holding the keys of a node to indicate that the data element indicated by the specified register is an offset to a sub tree in the containing area.
247 Nasm::X86::Tree::setOrClearTreeBitToMatchContent - Set or clear the tree bit pointed to by the specified register depending on the content of the specified variable.
248 Nasm::X86::Tree::setTreeBit - Set the tree bit in the numbered zmm register holding the keys of a node to indicate that the data element indexed by the specified register is an offset to a sub tree in the containing area.
249 Nasm::X86::Tree::setTreeBits - Put the tree bits in the specified register into the numbered zmm.
250 Nasm::X86::Tree::size - Return in a variable the number of elements currently in the tree.
251 Nasm::X86::Tree::sizeFromFirst - Return a variable containing the number of keys in the specified tree when the first block is held in a zmm register.
252 Nasm::X86::Tree::sizeIntoFirst - Put the contents of a variable into the size field of the first block of a tree when the first block is held in a zmm register.
253 Nasm::X86::Tree::splitNode - Split a node if it it is full returning a variable that indicates whether a split occurred or not.
254 Nasm::X86::Tree::splitNotRoot - Split a non root left node pushing its excess right and up.
255 Nasm::X86::Tree::splitRoot - Split a non root node into left and right nodes with the left half left in the left node and splitting key/data pushed into the parent node with the remainder pushed into the new right node
256 Nasm::X86::Tree::stealFromLeft - Steal one key from the node on the left where the current left node,parent node and right node are held in zmm registers and return one if the steal was performed, else zero.
257 Nasm::X86::Tree::stealFromRight - Steal one key from the node on the right where the current left node,parent node and right node are held in zmm registers and return one if the steal was performed, else zero.
258 Nasm::X86::Tree::substring - Create the substring of the specified string between the specified start and end keys.
259 Nasm::X86::Tree::union - Given a tree of trees consider each sub tree as a set and form the union of all these sets as a new tree
260 Nasm::X86::Tree::upFromData - Up from the data zmm in a block in a tree
261 Nasm::X86::Tree::upIntoData - Up into the data zmm in a block in a tree
262 Nasm::X86::Tree::yb - Call the specified block with each element of the specified tree in descending order.
263 Nasm::X86::Tree::zero - Zero the return fields of a tree descriptor
264 Nasm::X86::Unisyn::Lex::composeUnisyn - Compose phrases of Earl Zero, write them to a temporary file, return the temporary file name
265 Nasm::X86::Unisyn::Lex::left {3}; - Left operand
266 Nasm::X86::Unisyn::Lex::length {1}; - Length of the lexical item in bytes
267 Nasm::X86::Unisyn::Lex::Letter::A - ASCII characters extended with circled characters to act as escape sequences.
268 Nasm::X86::Unisyn::Lex::Letter::a - Assign infix operator with right to left binding at priority 2
269 Nasm::X86::Unisyn::Lex::Letter::B - Close
270 Nasm::X86::Unisyn::Lex::Letter::b - Open
271 Nasm::X86::Unisyn::Lex::Letter::d - Infix operator with left to right binding at priority 3
272 Nasm::X86::Unisyn::Lex::Letter::e - Infix operator with left to right binding at priority 4
273 Nasm::X86::Unisyn::Lex::Letter::p - Prefix operator - applies only to the following variable or bracketed term
274 Nasm::X86::Unisyn::Lex::Letter::q - Suffix operator - applies only to the preceding variable or bracketed term
275 Nasm::X86::Unisyn::Lex::Letter::s {} - Infix operator with left to right binding at priority 1
276 Nasm::X86::Unisyn::Lex::Letter::v - Variable names
277 Nasm::X86::Unisyn::Lex::LoadAlphabets - Create and load the table of lexical alphabets.
278 Nasm::X86::Unisyn::Lex::Number::A {2} - ASCII characters extended with circled characters to act as escape sequences.
279 Nasm::X86::Unisyn::Lex::Number::a {5} - Assign infix operator with right to left binding at priority 2
280 Nasm::X86::Unisyn::Lex::Number::b {10} - Open
281 Nasm::X86::Unisyn::Lex::Number::B {11} - Close
282 Nasm::X86::Unisyn::Lex::Number::d {3} - Infix operator with left to right binding at priority 3
283 Nasm::X86::Unisyn::Lex::Number::e {9} - Infix operator with left to right binding at priority 4
284 Nasm::X86::Unisyn::Lex::Number::F {1} - End symbol
285 Nasm::X86::Unisyn::Lex::Number::p {4} - Prefix operator - applies only to the following variable or bracketed term
286 Nasm::X86::Unisyn::Lex::Number::q {7} - Suffix operator - applies only to the preceding variable or bracketed term
287 Nasm::X86::Unisyn::Lex::Number::S {0} - Start symbol
288 Nasm::X86::Unisyn::Lex::Number::s {8} - Infix operator with left to right binding at priority 1
289 Nasm::X86::Unisyn::Lex::Number::v {6} - Variable names
290 Nasm::X86::Unisyn::Lex::OpenClose - Create and load the table of open to close bracket mappings
291 Nasm::X86::Unisyn::Lex::PermissibleTransitions - Create and load the table of lexical transitions.
292 Nasm::X86::Unisyn::Lex::position {0}; - Position of the parsed item in the input text
293 Nasm::X86::Unisyn::Lex::Reason::BadUtf8 {1}; - Bad utf8 character encountered
294 Nasm::X86::Unisyn::Lex::Reason::BracketsNotClosed {7}; - Open brackets not closed at end of
295 Nasm::X86::Unisyn::Lex::Reason::InvalidChar {2}; - Character not part of Earl Zero
296 Nasm::X86::Unisyn::Lex::Reason::InvalidTransition {3}; - Transition from one lexical item to another not allowed
297 Nasm::X86::Unisyn::Lex::Reason::Mismatch {5}; - Mismatched bracket
298 Nasm::X86::Unisyn::Lex::Reason::NotFinal {6}; - Expected something after final character
299 Nasm::X86::Unisyn::Lex::Reason::Success {0}; - Successful parse
300 Nasm::X86::Unisyn::Lex::Reason::TrailingClose {4}; - Trailing closing bracket discovered
301 Nasm::X86::Unisyn::Lex::right {4}; - Right operand
302 Nasm::X86::Unisyn::Lex::symbol {5}; - Symbol
303 Nasm::X86::Unisyn::Lex::type {2}; - Type of the lexical item
304 Nasm::X86::Unisyn::Parse::traverseApplyingLibraryOperators - Traverse a parse tree applying a library of operators
305 Nasm::X86::Variable::add - Add the right hand variable to the left hand variable and return the result as a new variable.
306 Nasm::X86::Variable::address - Create a variable that contains the address of another variable
307 Nasm::X86::Variable::addressExpr - Create a register expression to address an offset form a variable
308 Nasm::X86::Variable::allocateMemory - Allocate a variable amount of memory via mmap and return its address.
309 Nasm::X86::Variable::and - And two variables.
310 Nasm::X86::Variable::arithmetic - Return a variable containing the result of an arithmetic operation on the left hand and right hand side variables.
311 Nasm::X86::Variable::assign - Assign to the left hand side the value of the right hand side.
312 Nasm::X86::Variable::at - Return a "[register expression]" to address the data in the variable in the current stack frame
313 Nasm::X86::Variable::bFromZ - Get the byte from the numbered zmm register and put it in a variable.
314 Nasm::X86::Variable::bIntoX - Place the value of the content variable at the byte in the numbered xmm register.
315 Nasm::X86::Variable::bIntoZ - Place the value of the content variable at the byte in the numbered zmm register.
316 Nasm::X86::Variable::booleanZF - Combine the left hand variable with the right hand variable via a boolean operator and indicate the result by setting the zero flag if the result is true.
317 Nasm::X86::Variable::call - Execute the call instruction for a target whose address is held in the specified variable.
318 Nasm::X86::Variable::clearBit - Clear a bit in the specified mask register retaining the other bits.
319 Nasm::X86::Variable::clearMaskBit - Clear a bit in the specified mask register retaining the other bits.
320 Nasm::X86::Variable::clearMemory - Clear the memory described in this variable.
321 Nasm::X86::Variable::clone - Clone a variable to make a new variable.
322 Nasm::X86::Variable::compare - Compare the content of a variable with a numeric constant
323 Nasm::X86::Variable::copy - Copy one variable into another.
324 Nasm::X86::Variable::copyMemory - Copy from one block of memory to another.
325 Nasm::X86::Variable::copyRef - Copy a reference to a variable.
326 Nasm::X86::Variable::copyZF - Copy the current state of the zero flag into a variable.
327 Nasm::X86::Variable::copyZFInverted - Copy the opposite of the current state of the zero flag into a variable.
328 Nasm::X86::Variable::d - Dump the value of a variable on stderr and append the source file calling line in a format that Geany understands
329 Nasm::X86::Variable::dClassify - Classify the dword in a variable between ranges held in zmm registers and return the index of the matching range.
330 Nasm::X86::Variable::debug22 - Dump the value of a variable on stderr with an indication of where the dump came from.
331 Nasm::X86::Variable::dec - Decrement a variable.
332 Nasm::X86::Variable::dereference - Create a variable that contains the contents of the variable addressed by the specified variable
333 Nasm::X86::Variable::dFromPointInZ - Get the double word from the numbered zmm register at a point specified by the variable and return it in a variable.
334 Nasm::X86::Variable::dFromZ - Get the double word from the numbered zmm register and put it in a variable.
335 Nasm::X86::Variable::dIntoPointInZ - Put the variable double word content into the numbered zmm register at a point specified by the variable.
336 Nasm::X86::Variable::dIntoX - Place the value of the content variable at the double word in the numbered xmm register.
337 Nasm::X86::Variable::dIntoZ - Place the value of the content variable at the double word in the numbered zmm register.
338 Nasm::X86::Variable::divide - Divide the left hand variable by the right hand variable and return the result as a new variable.
339 Nasm::X86::Variable::division - Return a variable containing the result or the remainder that occurs when the left hand side is divided by the right hand side.
340 Nasm::X86::Variable::dump - Dump the value of a variable to the specified channel adding an optional title and new line if requested.
341 Nasm::X86::Variable::eq - Check whether the left hand variable is equal to the right hand variable.
342 Nasm::X86::Variable::equals - Equals operator.
343 Nasm::X86::Variable::err - Dump the value of a variable on stderr.
344 Nasm::X86::Variable::errCString - Print a zero terminated C style string addressed by a variable on stderr.
345 Nasm::X86::Variable::errCStringNL - Print a zero terminated C style string addressed by a variable on stderr followed by a new line.
346 Nasm::X86::Variable::errInDec - Dump the value of a variable on stderr in decimal.
347 Nasm::X86::Variable::errInDecNL - Dump the value of a variable on stderr in decimal followed by a new line.
348 Nasm::X86::Variable::errNL - Dump the value of a variable on stderr and append a new line.
349 Nasm::X86::Variable::errRightInBin - Write the specified variable number in binary right justified in a field of specified width to stderr
350 Nasm::X86::Variable::errRightInBinNL - Write the specified variable number in binary right justified in a field of specified width to stderr followed by a new line
351 Nasm::X86::Variable::errRightInDec - Dump the value of a variable on stderr as a decimal number right adjusted in a field of specified width.
352 Nasm::X86::Variable::errRightInDecNL - Dump the value of a variable on stderr as a decimal number right adjusted in a field of specified width followed by a new line.
353 Nasm::X86::Variable::errRightInHex - Write the specified variable number in hexadecimal right justified in a field of specified width to stderr
354 Nasm::X86::Variable::errRightInHexNL - Write the specified variable number in hexadecimal right justified in a field of specified width to stderr followed by a new line
355 Nasm::X86::Variable::errSpaces - Print the specified number of spaces to stderr.
356 Nasm::X86::Variable::for - Iterate a block a variable number of times.
357 Nasm::X86::Variable::freeMemory - Free the memory addressed by this variable for the specified length.
358 Nasm::X86::Variable::ge - Check whether the left hand variable is greater than or equal to the right hand variable.
359 Nasm::X86::Variable::getConst - Load the variable from a constant in effect setting a variable to a specified value.
360 Nasm::X86::Variable::getReg - Load the variable from a register expression.
361 Nasm::X86::Variable::gt - Check whether the left hand variable is greater than the right hand variable.
362 Nasm::X86::Variable::inc - Increment a variable.
363 Nasm::X86::Variable::incDec - Increment or decrement a variable.
364 Nasm::X86::Variable::isRef - Check whether the specified variable is a reference to another variable.
365 Nasm::X86::Variable::le - Check whether the left hand variable is less than or equal to the right hand variable.
366 Nasm::X86::Variable::loadZmm - Load bytes from the memory addressed by the specified source variable into the numbered zmm register.
367 Nasm::X86::Variable::lt - Check whether the left hand variable is less than the right hand variable.
368 Nasm::X86::Variable::max - Maximum of two variables.
369 Nasm::X86::Variable::min - Minimum of two variables.
370 Nasm::X86::Variable::minusAssign - Implement minus and assign.
371 Nasm::X86::Variable::mod - Divide the left hand variable by the right hand variable and return the remainder as a new variable.
372 Nasm::X86::Variable::ne - Check whether the left hand variable is not equal to the right hand variable.
373 Nasm::X86::Variable::not - Form two complement of left hand side and return it as a variable.
374 Nasm::X86::Variable::or - Or two variables.
375 Nasm::X86::Variable::out - Dump the value of a variable on stdout.
376 Nasm::X86::Variable::outCString - Print a zero terminated C style string addressed by a variable on stdout.
377 Nasm::X86::Variable::outCStringNL - Print a zero terminated C style string addressed by a variable on stdout followed by a new line.
378 Nasm::X86::Variable::outInDec - Dump the value of a variable on stdout in decimal.
379 Nasm::X86::Variable::outInDecNL - Dump the value of a variable on stdout in decimal followed by a new line.
380 Nasm::X86::Variable::outNL - Dump the value of a variable on stdout and append a new line.
381 Nasm::X86::Variable::outRightInBin - Write the specified variable number in binary right justified in a field of specified width to stdout
382 Nasm::X86::Variable::outRightInBinNL - Write the specified variable number in binary right justified in a field of specified width to stdout followed by a new line
383 Nasm::X86::Variable::outRightInDec - Dump the value of a variable on stdout as a decimal number right adjusted in a field of specified width.
384 Nasm::X86::Variable::outRightInDecNL - Dump the value of a variable on stdout as a decimal number right adjusted in a field of specified width followed by a new line.
385 Nasm::X86::Variable::outRightInHex - Write the specified variable number in hexadecimal right justified in a field of specified width to stdout
386 Nasm::X86::Variable::outRightInHexNL - Write the specified variable number in hexadecimal right justified in a field of specified width to stdout followed by a new line
387 Nasm::X86::Variable::outSpaces - Print the specified number of spaces to stdout.
388 Nasm::X86::Variable::plusAssign - Implement plus and assign.
389 Nasm::X86::Variable::printErrMemory - Print the specified number of bytes of the memory addressed by the variable on stdout.
390 Nasm::X86::Variable::printErrMemoryInHexNL - Write the memory addressed by a variable to stderr.
391 Nasm::X86::Variable::printErrMemoryNL - Print the specified number of bytes of the memory addressed by the variable on stdout followed by a new line.
392 Nasm::X86::Variable::printMemory - Print the specified number of bytes from the memory addressed by the variable on the specified channel.
393 Nasm::X86::Variable::printMemoryInHexNL - Write, in hexadecimal, the memory addressed by a variable to stdout or stderr.
394 Nasm::X86::Variable::printOutMemory - Print the specified number of bytes of the memory addressed by the variable on stdout.
395 Nasm::X86::Variable::printOutMemoryInHexNL - Write the memory addressed by a variable to stdout.
396 Nasm::X86::Variable::printOutMemoryNL - Print the specified number of bytes of the memory addressed by the variable on stdout followed by a new line.
397 Nasm::X86::Variable::putBwdqIntoMm - Place the value of the content variable at the byte|word|double word|quad word in the numbered zmm register.
398 Nasm::X86::Variable::putWIntoZmm - Place the value of the content variable at the word in the numbered zmm register.
399 Nasm::X86::Variable::qFromZ - Get the quad word from the numbered zmm register and put it in a variable.
400 Nasm::X86::Variable::qIntoX - Place the value of the content variable at the quad word in the numbered xmm register.
401 Nasm::X86::Variable::qIntoZ - Place the value of the content variable at the quad word in the numbered zmm register.
402 Nasm::X86::Variable::rightInBin - Write the specified variable number in binary right justified in a field of specified width to the specified channel.
403 Nasm::X86::Variable::rightInDec - Dump the value of a variable on the specified channel as a decimal number right adjusted in a field of specified width.
404 Nasm::X86::Variable::rightInHex - Write the specified variable number in hexadecimal right justified in a field of specified width to the specified channel.
405 Nasm::X86::Variable::setBit - Set a bit in the specified register retaining the other bits.
406 Nasm::X86::Variable::setMask - Set the mask register to ones starting at the specified position for the specified length and zeroes elsewhere.
407 Nasm::X86::Variable::setMaskBit - Set a bit in the specified mask register retaining the other bits.
408 Nasm::X86::Variable::setMaskFirst - Set the first bits in the specified mask register.
409 Nasm::X86::Variable::setReg - Set the named registers from the content of the variable.
410 Nasm::X86::Variable::setZmm - Load bytes from the memory addressed by specified source variable into the numbered zmm register at the offset in the specified offset moving the number of bytes in the specified variable.
411 Nasm::X86::Variable::shiftLeft - Shift the left hand variable left by the number of bits specified in the right hand variable and return the result as a new variable.
412 Nasm::X86::Variable::shiftRight - Shift the left hand variable right by the number of bits specified in the right hand variable and return the result as a new variable.
413 Nasm::X86::Variable::spaces - Print the specified number of spaces to the specified channel.
414 Nasm::X86::Variable::str - The name of the variable.
415 Nasm::X86::Variable::sub - Subtract the right hand variable from the left hand variable and return the result as a new variable.
416 Nasm::X86::Variable::times - Multiply the left hand variable by the right hand variable and return the result as a new variable.
417 Nasm::X86::Variable::update - Update the content of the addressed variable with the content of the specified variable
418 Nasm::X86::Variable::wFromZ - Get the word from the numbered zmm register and put it in a variable.
419 Nasm::X86::Variable::wIntoX - Place the value of the content variable at the word in the numbered xmm register.
420 "Nasm::X86::Yggdrasil::SubroutineDefinitions{K key =" 2}|/Nasm::X86::Yggdrasil::SubroutineDefinitions{K key => 2}> - Maps the unique string number for a subroutine name to the offset in the are that contains the length (as a dword) followed by the string content of the Perl data structure describing the subroutine in question.
421 "Nasm::X86::Yggdrasil::SubroutineOffsets {K key =" 1}|/Nasm::X86::Yggdrasil::SubroutineOffsets {K key => 1}> - Translates a string number into the offset of a subroutine in an area
422 "Nasm::X86::Yggdrasil::UniqueStrings {K key =" 0}|/Nasm::X86::Yggdrasil::UniqueStrings {K key => 0}> - A tree of strings that assigns unique numbers to strings
423 "Nasm::X86::Yggdrasil::Unisyn::Alphabets {K key =" 3}|/Nasm::X86::Yggdrasil::Unisyn::Alphabets {K key => 3}> - Unisyn alphabets
424 onGitHub - Whether we are on GitHub or not
425 OnSegv - Request a trace back followed by exit on a segv signal.
426 OpenRead - Open a file, whose name is addressed by rax, for read and return the file descriptor in rax.
427 OpenWrite - Create the file named by the terminated string addressed by rax for write.
428 opposingJump - Return the opposite of a jump
429 OptimizePopPush - Perform code optimizations.
430 OptimizeReload - Reload: a = b; b = a; remove second - as redundant
431 OrBlock - Short circuit or: execute a block of code to test conditions which, if one of them is met, leads on to the execution of the pass block, if all of the tests fail we continue withe the test block.
432 ParseUnisyn - Test the parse of a unisyn expression
433 Pass - Pass block for an OrBlock.
434 PopR - Pop registers from the stack.
435 PopRR - Pop registers from the stack without tracking.
436 PrintCString - Print a zero terminated C style string addressed by a variable on the specified channel.
437 PrintCStringNL - Print a zero terminated C style string addressed by a variable on the specified channel followed by a new line.
438 PrintErrMemory - Print the memory addressed by rax for a length of rdi on stderr.
439 PrintErrMemory_InHex - Dump memory from the address in rax for the length in rdi on stderr.
440 PrintErrMemory_InHexNL - Dump memory from the address in rax for the length in rdi and then print a new line.
441 PrintErrMemoryInHex - Dump memory from the address in rax for the length in rdi on stderr.
442 PrintErrMemoryInHexNL - Dump memory from the address in rax for the length in rdi and then print a new line.
443 PrintErrMemoryNL - Print the memory addressed by rax for a length of rdi followed by a new line on stderr.
444 PrintErrNL - Print a new line to stderr.
445 PrintErrOneRegisterInHex - Print the named register as a hex string on stderr.
446 PrintErrOneRegisterInHexNL - Print the named register as a hex string on stderr followed by new line.
447 PrintErrRax_InHex - Write the content of register rax in hexadecimal in big endian notation to stderr.
448 PrintErrRax_InHexNL - Write the content of register rax in hexadecimal in big endian notation to stderr followed by a new line.
449 PrintErrRaxAsChar - Print the character in on stderr.
450 PrintErrRaxAsCharNL - Print the character in on stderr followed by a new line.
451 PrintErrRaxAsText - Print rax as text on stderr.
452 PrintErrRaxAsTextNL - Print rax as text on stderr followed by a new line.
453 PrintErrRaxInDec - Print rax in decimal on stderr.
454 PrintErrRaxInDecNL - Print rax in decimal on stderr followed by a new line.
455 PrintErrRaxInHex - Write the content of register rax in hexadecimal in big endian notation to stderr.
456 PrintErrRaxInHexNL - Write the content of register rax in hexadecimal in big endian notation to stderr followed by a new line.
457 PrintErrRaxRightInDec - Print rax in decimal right justified in a field of the specified width on stderr.
458 PrintErrRaxRightInDecNL - Print rax in decimal right justified in a field of the specified width on stderr followed by a new line.
459 PrintErrRegisterInHex - Print the named registers as hex strings on stderr.
460 PrintErrRightInBin - Write the specified variable in binary right justified in a field of specified width on stderr.
461 PrintErrRightInBinNL - Write the specified variable in binary right justified in a field of specified width on stderr followed by a new line.
462 PrintErrRightInHex - Write the specified variable in hexadecimal right justified in a field of specified width on stderr.
463 PrintErrRightInHexNL - Write the specified variable in hexadecimal right justified in a field of specified width on stderr followed by a new line.
464 PrintErrSpace - Print a constant number of spaces to stderr.
465 PrintErrString - Print a constant string to stderr.
466 PrintErrStringNL - Print a constant string to stderr followed by a new line.
467 PrintErrTraceBack - Print sub routine track back on stderr and then exit with a message.
468 PrintErrZF - Print the zero flag without disturbing it on stderr.
469 PrintMemory - Print the memory addressed by rax for a length of rdi on the specified channel where channel can be a constant number or a register expression using a bound register.
470 PrintMemory_InHex - Dump memory from the address in rax for the length in rdi on the specified channel.
471 PrintMemoryInHex - Dump memory from the address in rax for the length in rdi on the specified channel.
472 PrintMemoryNL - Print the memory addressed by rax for a length of rdi on the specified channel followed by a new line.
473 PrintNL - Print a new line to stdout or stderr.
474 PrintOneRegisterInHex - Print the named register as a hex string.
475 PrintOutMemory - Print the memory addressed by rax for a length of rdi on stdout.
476 PrintOutMemory_InHex - Dump memory from the address in rax for the length in rdi on stdout.
477 PrintOutMemory_InHexNL - Dump memory from the address in rax for the length in rdi and then print a new line.
478 PrintOutMemoryInHex - Dump memory from the address in rax for the length in rdi on stdout.
479 PrintOutMemoryInHexNL - Dump memory from the address in rax for the length in rdi and then print a new line.
480 PrintOutMemoryNL - Print the memory addressed by rax for a length of rdi followed by a new line on stdout.
481 PrintOutNL - Print a new line to stderr.
482 PrintOutOneRegisterInHex - Print the named register as a hex string on stdout.
483 PrintOutOneRegisterInHexNL - Print the named register as a hex string on stdout followed by new line.
484 PrintOutRax_InHex - Write the content of register rax in hexadecimal in big endian notation to stout.
485 PrintOutRax_InHexNL - Write the content of register rax in hexadecimal in big endian notation to stdout followed by a new line.
486 PrintOutRaxAsChar - Print the character in on stdout.
487 PrintOutRaxAsCharNL - Print the character in on stdout followed by a new line.
488 PrintOutRaxAsText - Print rax as text on stdout.
489 PrintOutRaxAsTextNL - Print rax as text on stdout followed by a new line.
490 PrintOutRaxInDec - Print rax in decimal on stdout.
491 PrintOutRaxInDecNL - Print rax in decimal on stdout followed by a new line.
492 PrintOutRaxInHex - Write the content of register rax in hexadecimal in big endian notation to stout.
493 PrintOutRaxInHexNL - Write the content of register rax in hexadecimal in big endian notation to stdout followed by a new line.
494 PrintOutRaxInReverseInHex - Write the content of register rax to stderr in hexadecimal in little endian notation.
495 PrintOutRaxRightInDec - Print rax in decimal right justified in a field of the specified width on stdout.
496 PrintOutRaxRightInDecNL - Print rax in decimal right justified in a field of the specified width on stdout followed by a new line.
497 PrintOutRegisterInHex - Print the named registers as hex strings on stdout.
498 PrintOutRegistersInHex - Print the general purpose registers in hex.
499 PrintOutRflagsInHex - Print the flags register in hex.
500 PrintOutRightInBin - Write the specified variable in binary right justified in a field of specified width on stdout.
501 PrintOutRightInBinNL - Write the specified variable in binary right justified in a field of specified width on stdout followed by a new line.
502 PrintOutRightInHex - Write the specified variable in hexadecimal right justified in a field of specified width on stdout.
503 PrintOutRightInHexNL - Write the specified variable in hexadecimal right justified in a field of specified width on stdout followed by a new line.
504 PrintOutRipInHex - Print the instruction pointer in hex.
505 PrintOutSpace - Print a constant number of spaces to stdout.
506 PrintOutString - Print a constant string to stdout.
507 PrintOutStringNL - Print a constant string to stdout followed by a new line.
508 PrintOutTraceBack - Print sub routine track back on stdout and then exit with a message.
509 PrintOutZF - Print the zero flag without disturbing it on stdout.
510 PrintRax_InHex - Write the content of register rax in hexadecimal in big endian notation to the specified channel replacing zero bytes with __.
511 PrintRaxAsChar - Print the ascii character in rax on the specified channel.
512 PrintRaxAsText - Print the string in rax on the specified channel.
513 PrintRaxInDec - Print rax in decimal on the specified channel.
514 PrintRaxInHex - Write the content of register rax in hexadecimal in big endian notation to the specified channel.
515 PrintRaxRightInDec - Print rax in decimal right justified in a field of the specified width on the specified channel.
516 PrintRegisterInHex - Print the named registers as hex strings.
517 PrintRightInBin - Print out a number in hex right justified in a field of specified width on the specified channel
518 PrintRightInHex - Print out a number in hex right justified in a field of specified width on the specified channel
519 PrintSpace - Print a constant number of spaces to the specified channel.
520 PrintString - Print a constant string to the specified channel.
521 PrintStringNL - Print a constant string to the specified channel followed by a new line.
522 PrintTraceBack - Trace the call stack.
523 PushR - Push registers onto the stack.
524 PushRR - Push registers onto the stack without tracking.
525 qFromX - Get the quad word from the numbered xmm register and return it in a variable.
526 qFromZ - Get the quad word from the numbered zmm register and return it in a variable.
527 R - Define a reference variable.
528 Rb - Layout bytes in the data segment and return their label.
529 Rbwdq - Layout data.
530 RComment - Insert a comment into the read only data segment.
531 Rd - Layout double words in the data segment and return their label.
532 ReadArea - Read an area stored in a file into memory and return an area descriptor for the area so created.
533 ReadChar - Read a character from stdin and return it in rax else return -1 in rax if no character was read.
534 ReadFile - Read a file into memory.
535 ReadInteger - Reads an integer in decimal and returns it in rax.
536 ReadLine - Reads up to 8 characters followed by a terminating return and place them into rax.
537 ReadTimeStampCounter - Read the time stamp counter and return the time in nanoseconds in rax.
538 registerNameFromNumber - Register name from number where possible
539 RegisterSize - Return the size of a register.
540 RestoreFirstFour - Restore the first 4 parameter registers.
541 RestoreFirstFourExceptRax - Restore the first 4 parameter registers except rax so it can return its value.
542 RestoreFirstSeven - Restore the first 7 parameter registers.
543 RestoreFirstSevenExceptRax - Restore the first 7 parameter registers except rax which is being used to return the result.
544 Rq - Layout quad words in the data segment and return their label.
545 Rs - Layout bytes in read only memory and return their label.
546 Rutf8 - Layout a utf8 encoded string as bytes in read only memory and return their label.
547 Rw - Layout words in the data segment and return their label.
548 SaveFirstFour - Save the first 4 parameter registers making any parameter registers read only.
549 SaveFirstSeven - Save the first 7 parameter registers.
550 SaveRegIntoMm - Save the specified register into the numbered zmm at the quad offset specified as a constant number.
551 SetLabel - Create (if necessary) and set a label in the code section returning the label so set.
552 SetMaskRegister - Set the mask register to ones starting at the specified position for the specified length and zeroes elsewhere.
553 SetZF - Set the zero flag.
554 Start - Initialize the assembler.
555 StatSize - Stat a file whose name is addressed by rax to get its size in rax.
556 StringLength - Length of a zero terminated string.
557 Subroutine - Create a subroutine that can be called in assembler code.
558 SubroutineStartStack - Initialize a new stack frame.
559 Then - Then block for an If statement.
560 totalBytesAssembled - Total size in bytes of all files assembled during testing.
561 unlinkFile - Unlink the named file.
562 uptoNTimes - Execute a block of code up to a constant number of times controlled by the named register
563 V - Define a variable.
564 Variable - Create a new variable with the specified name initialized via an optional expression.
565 WaitPid - Wait for the pid in rax to complete.
566 wFromX - Get the word from the numbered xmm register and return it in a variable.
567 wFromZ - Get the word from the numbered zmm register and return it in a variable.
568 wRegFromZmm - Load the specified register from the word at the specified offset located in the numbered zmm.
569 wRegIntoZmm - Put the specified register into the word in the numbered zmm at the specified offset in the zmm.
570 xmm - Add xmm to the front of a list of register expressions.
571 ymm - Add ymm to the front of a list of register expressions.
572 zmm - Add zmm to the front of a list of register expressions.
573 zmmM - Add zmm to the front of a register number and a mask after it
574 zmmMZ - Add zmm to the front of a register number and mask and zero after it
Installation
This module is written in 100% Pure Perl and, thus, it is easy to read, comprehend, use, modify and install via cpan:
sudo cpan install Nasm::X86
Author
Copyright
Copyright (c) 2016-2021 Philip R Brenan.
This module is free software. It may be used, redistributed and/or modified under the same terms as Perl itself.