NAME
AI::MXNet - Perl interface to MXNet machine learning library
SYNOPSIS
## Convolutional NN for recognizing hand-written digits in MNIST dataset
## It's considered "Hello, World" for Neural Networks
## For more info about the MNIST problem please refer to http://neuralnetworksanddeeplearning.com/chap1.html
use strict;
use warnings;
use AI::MXNet qw(mx);
use AI::MXNet::TestUtils qw(GetMNIST_ubyte);
use Test::More tests => 1;
# symbol net
my $batch_size = 100;
### model
my $data = mx->symbol->Variable('data');
my $conv1= mx->symbol->Convolution(data => $data, name => 'conv1', num_filter => 32, kernel => [3,3], stride => [2,2]);
my $bn1 = mx->symbol->BatchNorm(data => $conv1, name => "bn1");
my $act1 = mx->symbol->Activation(data => $bn1, name => 'relu1', act_type => "relu");
my $mp1 = mx->symbol->Pooling(data => $act1, name => 'mp1', kernel => [2,2], stride =>[2,2], pool_type=>'max');
my $conv2= mx->symbol->Convolution(data => $mp1, name => 'conv2', num_filter => 32, kernel=>[3,3], stride=>[2,2]);
my $bn2 = mx->symbol->BatchNorm(data => $conv2, name=>"bn2");
my $act2 = mx->symbol->Activation(data => $bn2, name=>'relu2', act_type=>"relu");
my $mp2 = mx->symbol->Pooling(data => $act2, name => 'mp2', kernel=>[2,2], stride=>[2,2], pool_type=>'max');
my $fl = mx->symbol->Flatten(data => $mp2, name=>"flatten");
my $fc1 = mx->symbol->FullyConnected(data => $fl, name=>"fc1", num_hidden=>30);
my $act3 = mx->symbol->Activation(data => $fc1, name=>'relu3', act_type=>"relu");
my $fc2 = mx->symbol->FullyConnected(data => $act3, name=>'fc2', num_hidden=>10);
my $softmax = mx->symbol->SoftmaxOutput(data => $fc2, name => 'softmax');
# check data
GetMNIST_ubyte();
my $train_dataiter = mx->io->MNISTIter({
image=>"data/train-images-idx3-ubyte",
label=>"data/train-labels-idx1-ubyte",
data_shape=>[1, 28, 28],
batch_size=>$batch_size, shuffle=>1, flat=>0, silent=>0, seed=>10});
my $val_dataiter = mx->io->MNISTIter({
image=>"data/t10k-images-idx3-ubyte",
label=>"data/t10k-labels-idx1-ubyte",
data_shape=>[1, 28, 28],
batch_size=>$batch_size, shuffle=>1, flat=>0, silent=>0});
my $n_epoch = 1;
my $mod = mx->mod->new(symbol => $softmax);
$mod->fit(
$train_dataiter,
eval_data => $val_dataiter,
optimizer_params=>{learning_rate=>0.01, momentum=> 0.9},
num_epoch=>$n_epoch
);
my $res = $mod->score($val_dataiter, mx->metric->create('acc'));
ok($res->{accuracy} > 0.8);
DESCRIPTION
Perl interface to MXNet machine learning library.
BUGS AND INCOMPATIBILITIES
Parity with Python interface is mostly achieved, few deprecated
and not often used features left unported for now.
SEE ALSO
http://mxnet.io/
https://github.com/dmlc/mxnet/tree/master/perl-package
Function::Parameters, Mouse
AUTHOR
Sergey Kolychev, <sergeykolychev.github@gmail.com>
COPYRIGHT & LICENSE
This library is licensed under Apache 2.0 license https://www.apache.org/licenses/LICENSE-2.0