NAME
AI::MXNet::Callback - A collection of predefined callback functions
module_checkpoint
Callback to checkpoint Module to prefix every epoch.
Parameters ---------- $mod : subclass of AI::MXNet::Module::Base The module to checkpoint. $prefix : str The file prefix to checkpoint to $period=1 : int How many epochs to wait before checkpointing. Default is 1. $save_optimizer_states=0 : Bool Whether to save optimizer states for continue training
Returns ------- $callback : sub ref The callback function that can be passed as iter_end_callback to fit.
log_train_metric
Callback to log the training evaluation result every period.
Parameters ---------- $period : Int The number of batch to log the training evaluation metric. $auto_reset : Bool Reset the metric after each log
Returns ------- $callback : sub ref The callback function that can be passed as iter_epoch_callback to fit.
NAME
AI::MXNet::Speedometer - A callback that logs training speed
DESCRIPTION
Calculate and log training speed periodically.
Parameters
----------
batch_size: int
batch_size of data
frequent: int
How many batches between calculations.
Defaults to calculating & logging every 50 batches.
NAME
AI::MXNet::ProgressBar - A callback to show a progress bar.
DESCRIPTION
Show a progress bar.
Parameters ---------- total: Int total batch size, 1 length: Int length or progress bar, 80
NAME
AI::MXNet::LogValidationMetricsCallback - A callback to log the eval metrics at the end of an epoch.