NAME
AI::MXNet::RNN::Params
DESCRIPTION
Container for holding variables.
Used by RNN cells for parameter sharing between cells.
Parameters
----------
prefix : str
All variables' name created by this container will
be prepended with prefix
get
Get a variable with name or create a new one if missing.
Parameters
----------
name : str
name of the variable
@kwargs:
more arguments that are passed to mx->sym->Variable call
NAME
AI::MXNet::RNNCell::Base
DESCRIPTION
Abstract base class for RNN cells
Parameters
----------
prefix : str
prefix for name of layers
(and name of weight if params is undef)
params : RNNParams or undef
container for weight sharing between cells.
created if undef.
reset
Reset before re-using the cell for another graph
call
Construct symbol for one step of RNN.
Parameters
----------
inputs : mx->sym->Variable
input symbol, 2D, batch * num_units
states : mx->sym->Variable or ArrayRef[Symbol]
state from previous step or begin_state().
Returns
-------
output : Symbol
output symbol
states : Symbol
state to next step of RNN.
Can be called via overloaded &{}: &{$cell}($inputs, $states);
params
Parameters of this cell
state_shape
shape(s) of states
begin_state
Initial state for this cell.
Parameters
----------
func : sub ref, default AI::MXNet::Symbol->can('zeros')
Function for creating initial state.
Can be AI::MXNet::Symbol->can('zeros'),
AI::MXNet::Symbol->can('uniform'), AI::MXNet::Symbol->can('Variable') etc.
Use AI::MXNet::Symbol->can('Variable') if you want to directly
feed input as states.
@kwargs :
more keyword arguments passed to func. For example
mean, std, dtype, etc.
Returns
-------
states : array ref of Symbol
starting states for first RNN step
unpack_weights
Unpack fused weight matrices into separate
weight matrices
Parameters
----------
args : hash ref of str -> NDArray
dictionary containing packed weights.
usually from Module.get_output()
Returns
-------
args : hash ref of str -> NDArray
dictionary with weights associated to
this cell unpacked.
pack_weights
Unpack fused weight matrices into separate
weight matrices
Parameters
----------
args : hash ref of str -> NDArray
dictionary containing unpacked weights.
Returns
-------
args : hash ref of str -> NDArray
dictionary with weights associated to
this cell packed.
unroll
Unroll an RNN cell across time steps.
Parameters
----------
length : int
number of steps to unroll
inputs : Symbol, list of Symbol, or undef
if inputs is a single Symbol (usually the output
of Embedding symbol), it should have shape
(batch_size, length, ...) if layout == 'NTC',
or (length, batch_size, ...) if layout == 'TNC'.
If inputs is a array ref of symbols (usually output of
previous unroll), they should all have shape
(batch_size, ...).
If inputs is undef, Placeholder variables are
automatically created.
begin_state : array ref of Symbol
input states. Created by begin_state()
or output state of another cell. Created
from begin_state() if undef.
input_prefix : str
prefix for automatically created input
placehodlers.
layout : str
layout of input symbol. Only used if inputs
is a single Symbol.
merge_outputs : bool
if 0, return outputs as a list of Symbols.
If 1, concatenate output across time steps
and return a single symbol with shape
(batch_size, length, ...) if layout == 'NTC',
or (length, batch_size, ...) if layout == 'TNC'.
Returns
-------
outputs : array ref of Symbol or Symbol
output symbols.
states : Symbol or nested list of Symbol
has the same structure as begin_state()
NAME
AI::MXNet::RNN::Cell
DESCRIPTION
Simple recurrent neural network cell
Parameters
----------
num_hidden : int
number of units in output symbol
activation : str or Symbol, default 'tanh'
type of activation function
prefix : str, default 'rnn_'
prefix for name of layers
(and name of weight if params is undef)
params : AI::MXNet::RNNParams or undef
container for weight sharing between cells.
created if undef.
state_shape
shape(s) of states
call
Construct symbol for one step of RNN.
Parameters
----------
inputs : sym.Variable
input symbol, 2D, batch * num_units
states : sym.Variable
state from previous step or begin_state().
Returns
-------
output : Symbol
output symbol
states : Symbol
state to next step of RNN.
NAME
AI::MXNet::RNN::LSTMCell
DESCRIPTION
Long-Short Term Memory (LSTM) network cell.
Parameters
----------
num_hidden : int
number of units in output symbol
prefix : str, default 'lstm_'
prefix for name of layers
(and name of weight if params is undef)
params : AI::MXNet::RNN::Params or None
container for weight sharing between cells.
created if undef.
state_shape
shape(s) of states
unpack_weights
Unpack fused weight matrices into separate
weight matrices
Parameters
----------
args : hashref of str -> NDArray
dictionary containing packed weights.
usually from $Module->get_output()
Returns
-------
args : hashref of str -> NDArray
dictionary with weights associated to
this cell unpacked.
pack_weights
Pack separate weight matrices into fused
weight.
Parameters
----------
args : hashref of str -> NDArray
dictionary containing unpacked weights.
Returns
-------
args : hashref of str -> NDArray
dictionary with weights associated to
this cell packed.
call
Construct symbol for one step of RNN.
Parameters
----------
inputs : sym.Variable
input symbol, 2D, batch * num_units
states : sym.Variable
state from previous step or begin_state().
Returns
-------
output : Symbol
output symbol
states : Symbol
state to next step of RNN.
NAME
AI::MXNet::RNN::FusedCell
DESCRIPTION
Fusing RNN layers across time step into one kernel.
Improves speed but is less flexible. Currently only
supported if using cuDNN on GPU.
unroll
Unroll an RNN cell across time steps.
Parameters
----------
length : int
number of steps to unroll
inputs : Symbol, array ref of Symbol, or undef
if inputs is a single Symbol (usually the output
of Embedding symbol), it should have shape
(batch_size, length, ...) if layout == 'NTC',
or (length, batch_size, ...) if layout == 'TNC'.
using 'TNC' is more efficient for RNN::FusedCell.
If inputs is a array ref of symbols (usually output of
previous unroll), they should all have shape
(batch_size, ...). using single symbol is
more efficient for RNN::FusedCell.
If inputs is undef, a single placeholder variable is
automatically created.
begin_state : array ref of Symbol
input states. Created by begin_state()
or output state of another cell. Created
from begin_state() if undef.
input_prefix : str
prefix for automatically created input
placehodlers.
layout : str
layout of input/output symbol.
merge_outputs : Bool
default 0
Returns
-------
outputs : array ref of Symbol
output symbols.
states : Symbol or array ref of Symbol
has the same structure as begin_state()
NAME
AI:MXNet::RNN::SequentialCell
DESCRIPTION
Sequentially stacking multiple RNN cells
Parameters
----------
params : RNN::Params or undef
container for weight sharing between cells.
created if undef.
add
Append a cell into the stack.
Parameters
----------
cell : rnn cell
NAME
AI::MXNet::RNN::ModifierCell
DESCRIPTION
Base class for modifier cells. A modifier
cell takes a base cell, apply modifications
on it (e.g. Dropout), and returns a new cell.
After applying modifiers the base cell should
no longer be called directly. The modifer cell
should be used instead.
NAME
AI::MXNet::RNN::DropoutCell
DESCRIPTION
Apply dropout on base cell
NAME
AI::MXNet::RNN::ZoneoutCell
DESCRIPTION
Apply Zoneout on base cell