DESCRIPTION

Common Optimization algorithms with regularizations.

create_optimizer

Create an optimizer with specified name.

Parameters
----------
name: str
    Name of required optimizer. Should be the name
    of a subclass of Optimizer. Case insensitive.

rescale_grad : float
    Rescaling factor on gradient. Normally should be 1/batch_size.

kwargs: dict
    Parameters for optimizer

Returns
-------
opt : Optimizer
    The result optimizer.

set_lr_mult

Set individual learning rate multipler for parameters

Parameters
----------
args_lr_mult : dict of string/int to float
    set the lr multipler for name/index to float.
    setting multipler by index is supported for backward compatibility,
    but we recommend using name and symbol.

set_wd_mult

Set individual weight decay multipler for parameters.
By default wd multipler is 0 for all params whose name doesn't
end with _weight, if param_idx2name is provided.

Parameters
----------
args_wd_mult : dict of string/int to float
    set the wd multipler for name/index to float.
    setting multipler by index is supported for backward compatibility,
    but we recommend using name and symbol.

_update_count

update num_update

Parameters:
index : int
    The index will be updated

_get_lr

get learning rate for index.

Parameters
----------
index : int
    The index for weight

Returns
-------
lr : float
    learning rate for this index

_get_wd

get weight decay for index.
Returns 0 for non-weights if the name of weights are provided for __init__.

Parameters
----------
index : int
    The index for weight

Returns
-------
wd : float
    weight decay for this index
A very simple SGD optimizer with momentum and weight regularization.

Parameters
----------
learning_rate : float, optional
    learning_rate of SGD

momentum : float, optional
   momentum value

wd : float, optional
    L2 regularization coefficient add to all the weights

rescale_grad : float, optional
    rescaling factor of gradient. Normally should be 1/batch_size.

clip_gradient : float, optional
    clip gradient in range [-clip_gradient, clip_gradient]

param_idx2name : dict of string/int to float, optional
    special treat weight decay in parameter ends with bias, gamma, and beta

create_state

Create additional optimizer state such as momentum.

    Parameters
    ----------
    weight : NDArray
        The weight data

update

Update the parameters.

Parameters
----------
index : int
    An unique integer key used to index the parameters

weight : NDArray
    weight ndarray

grad : NDArray
    grad ndarray

state : NDArray or other objects returned by init_state
    The auxiliary state used in optimization.

NAME

AI::MXNet::DCASGD

DESCRIPTION

DCASGD optimizer with momentum and weight regularization.

implement paper "Asynchronous Stochastic Gradient Descent with
                Delay Compensation for Distributed Deep Learning"

Parameters
----------
learning_rate : float, optional
    learning_rate of SGD

momentum : float, optional
   momentum value

lamda : float, optional
   scale DC value

wd : float, optional
    L2 regularization coefficient add to all the weights

rescale_grad : float, optional
    rescaling factor of gradient. Normally should be 1/batch_size.

clip_gradient : float, optional
    clip gradient in range [-clip_gradient, clip_gradient]

param_idx2name : hash ref of string/int to float, optional
    special treat weight decay in parameter ends with bias, gamma, and beta

create_state

Create additional optimizer state such as momentum.

    Parameters
    ----------
    weight : NDArray
        The weight data

update

Update the parameters.

Parameters
----------
index : int
    An unique integer key used to index the parameters

weight : NDArray
    weight ndarray

grad : NDArray
    grad ndarray

state : NDArray or other objects returned by init_state
    The auxiliary state used in optimization.

6 POD Errors

The following errors were encountered while parsing the POD:

Around line 270:

=begin without a target?

Around line 688:

=begin without a target?

Around line 821:

=begin without a target?

Around line 902:

=begin without a target?

Around line 999:

=begin without a target?

Around line 1132:

=begin without a target?