NAME
Algorithm::BIT::XS - Binary indexed trees / Fenwick trees
SYNOPSIS
use Algorithm::BIT::XS;
my $bit = Algorithm::BIT::XS->new(100);
$bit->update(1, 5); # bit[1] += 5
$bit->update(3, 6); # bit[3] += 6
say 'bit[1..2] == ', $bit->query(2); # 5
say 'bit[1..3] == ', $bit->query(3); # 11
say 'bit[1..20] == ', $bit->query(20); # 11
$bit->update(3, 10); # bit[3] += 10
say 'bit[1..3] == ', $bit->query(3); # 21
say 'bit[3] == ', $bit->get(3); # 16
$bit->set(3, 10); # bit[3] = 10
say 'bit[3] == ', $bit->get(3); # 10
$bit->clear;
say 'bit[1..100] == ', $bit->query(100); # 0
$bit->set(100, 5);
say 'bit[1..100] == ', $bit->query(100); # 5
DESCRIPTION
A binary indexed tree is a data structure similar to an array of integers. The two main operations are updating an element and calculating a prefix sum, both of which run in time logarithmic in the size of the tree.
- Algorithm::BIT::XS->new($len)
-
Create a new binary indexed tree of length $len. As binary indexed trees are 1-indexed, its indexes are [1..$len]. It is initially filled with zeroes.
- $bit->clear()
-
Clears the binary indexed tree (sets all elements to 0).
- $bit->query($idx)
-
Returns the prefix sum $bit[1] + $bit[2] + ... + $bit[$idx].
- $bit->update($idx, $value)
-
Adds $value to $bit[$idx].
- $bit->get($idx)
-
Returns the value of $bit[$idx].
- $bit->set($idx, $value)
-
Sets $bit[$idx] to $value.
SEE ALSO
Algorithm::BIT, Algorithm::BIT2D::XS, https://en.wikipedia.org/wiki/Fenwick_tree
AUTHOR
Marius Gavrilescu, <marius@ieval.ro>
COPYRIGHT AND LICENSE
Copyright (C) 2017 by Marius Gavrilescu
This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself, either Perl version 5.24.1 or, at your option, any later version of Perl 5 you may have available.