NAME
Math::GSL::Sys -
SYNOPSIS
use Math::GSL::Sys qw /:all/;
DESCRIPTION
Here is a list of all the functions in this module :
gsl_log1p($x)
- This function computes the value of \log(1+$x) in a way that is accurate for small $x. It provides an alternative to the BSD math function log1p(x). =item *gsl_expm1($x)
- This function computes the value of \exp($x)-1 in a way that is accurate for small $x. It provides an alternative to the BSD math function expm1(x).gsl_hypot($x, $y)
- This function computes the value of \sqrt{$x^2 + $y^2} in a way that avoids overflow. It provides an alternative to the BSD math function hypot($x,$y).gsl_hypot3($x, $y, $z)
- This function computes the value of \sqrt{$x^2 + $y^2 + $z^2} in a way that avoids overflow.gsl_acosh($x)
- This function computes the value of \arccosh($x). It provides an alternative to the standard math function acosh($x).gsl_asinh($x)
- This function computes the value of \arcsinh($x). It provides an alternative to the standard math function asinh($x).gsl_atanh($x)
- This function computes the value of \arctanh($x). It provides an alternative to the standard math function atanh($x).gsl_isnan($x)
- This function returns 1 if $x is not-a-number.gsl_isinf($x)
- This function returns +1 if $x is positive infinity, -1 if $x is negative infinity and 0 otherwise.gsl_finite($x)
- This function returns 1 if $x is a real number, and 0 if it is infinite or not-a-number.gsl_posinf
gsl_neginf
gsl_fdiv
gsl_coerce_double
gsl_coerce_float
gsl_coerce_long_double
gsl_ldexp($x, $e)
- This function computes the value of $x * 2**$e. It provides an alternative to the standard math function ldexp($x,$e).gsl_frexp($x)
- This function splits the number $x into its normalized fraction f and exponent e, such that $x = f * 2^e and 0.5 <= f < 1. The function returns f and then the exponent in e. If $x is zero, both f and e are set to zero. This function provides an alternative to the standard math function frexp(x, e).gsl_fcmp($x, $y, $epsilon)
- This function determines whether $x and $y are approximately equal to a relative accuracy $epsilon. The relative accuracy is measured using an interval of size 2 \delta, where \delta = 2^k \epsilon and k is the maximum base-2 exponent of $x and $y as computed by the function frexp. If $x and $y lie within this interval, they are considered approximately equal and the function returns 0. Otherwise if $x < $y, the function returns -1, or if $x > $y, the function returns +1. Note that $x and $y are compared to relative accuracy, so this function is not suitable for testing whether a value is approximately zero. The implementation is based on the package fcmp by T.C. Belding.
For more informations on the functions, we refer you to the GSL offcial documentation: http://www.gnu.org/software/gsl/manual/html_node/
Tip : search on google: site:http://www.gnu.org/software/gsl/manual/html_node/ name_of_the_function_you_want
AUTHORS
Jonathan Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>
COPYRIGHT AND LICENSE
Copyright (C) 2008 Jonathan Leto and Thierry Moisan
This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.