NAME

Math::GSL::Complex - Complex Numbers

SYNOPSIS

use Math::GSL::Complex qw/:all/;
my $complex = Math::GSL::Complex->new([3,2]); # creates a complex number 3+2*i
my $real = $complex->real; # returns the real value of the complex number
my $imag = $complex->imag; # returns the imaginary value of the complex number
$complex->gsl_set_real(5); # changes the real value of the complex number to 5
$complex->gsl_set_imag(4); # changes the imaginary value of the complex number to 4
$complex->gsl_set_complex(7,6); # changes the real value of the complex number to 7 and the imaginary value to 6
($real, $imag) = $complex->parts; # returns the real and imaginary values of the complex number
my $abs = gsl_complex_abs2($complex->raw); # the raw method gives access to the underlying gsl_complex structure, it is needed for the functions below.

DESCRIPTION

Here is a list of all the functions included in this module :

gsl_complex_arg($z) - return the argument of the complex number $z
gsl_complex_abs($z) - return |$z|, the magnitude of the complex number $z
gsl_complex_rect($x,$y) - create a complex number in cartesian form $x + $y*I
gsl_complex_polar($r,$theta) - create a complex number in polar form $r*exp(I*$theta)
gsl_complex_abs2($z) - return |$z|^2, the squared magnitude of the complex number $z
gsl_complex_logabs($z) - return log(|$z|), the natural logarithm of the magnitude of the complex number $z
gsl_complex_add($c1, $c2) - return a complex number which is the sum of the complex numbers $c1 and $c2
gsl_complex_sub($c1, $c2) - return a complex number which is the difference between $c1 and $c2 ($c1 - $c2)
gsl_complex_mul($c1, $c2) - return a complex number which is the product of the complex numbers $c1 and $c2
gsl_complex_div($c1, $c2) - return a complex number which is the quotient of the complex numbers $c1 and $c2 ($c1 / $c2)
gsl_complex_add_real($c, $x) - return the sum of the complex number $c and the real number $x
gsl_complex_sub_real($c, $x) - return the difference of the complex number $c and the real number $x
gsl_complex_mul_real($c, $x) - return the product of the complex number $c and the real number $x
gsl_complex_div_real($c, $x) - return the quotient of the complex number $c and the real number $x
gsl_complex_add_imag($c, $y) - return sum of the complex number $c and the imaginary number i*$x
gsl_complex_sub_imag($c, $y) - return the diffrence of the complex number $c and the imaginary number i*$x
gsl_complex_mul_imag($c, $y) - return the product of the complex number $c and the imaginary number i*$x
gsl_complex_div_imag($c, $y) - return the quotient of the complex number $c and the imaginary number i*$x
gsl_complex_conjugate($c) - return the conjugate of the of the complex number $c (x - i*y)
gsl_complex_inverse($c) - return the inverse, or reciprocal of the complex number $c (1/$c)
gsl_complex_negative($c) - return the negative of the complex number $c (-x -i*y)
gsl_complex_sqrt($c) - return the square root of the complex number $c
gsl_complex_sqrt_real($x) - return the complex square root of the real number $x, where $x may be negative
gsl_complex_pow($c1, $c2) - return the complex number $c1 raised to the complex power $c2
gsl_complex_pow_real($c, $x) - return the complex number raised to the real power $x
gsl_complex_exp($c) - return the complex exponential of the complex number $c
gsl_complex_log($c) - return the complex natural logarithm (base e) of the complex number $c
gsl_complex_log10($c) - return the complex base-10 logarithm of the complex number $c
gsl_complex_log_b($c, $b) - return the complex base-$b of the complex number $c
gsl_complex_sin($c) - return the complex sine of the complex number $c
gsl_complex_cos($c) - return the complex cosine of the complex number $c
gsl_complex_sec($c) - return the complex secant of the complex number $c
gsl_complex_csc($c) - return the complex cosecant of the complex number $c
gsl_complex_tan($c) - return the complex tangent of the complex number $c
gsl_complex_cot($c) - return the complex cotangent of the complex number $c
gsl_complex_arcsin($c) - return the complex arcsine of the complex number $c
gsl_complex_arcsin_real($x) - return the complex arcsine of the real number $x
gsl_complex_arccos($c) - return the complex arccosine of the complex number $c
gsl_complex_arccos_real($x) - return the complex arccosine of the real number $x
gsl_complex_arcsec($c) - return the complex arcsecant of the complex number $c
gsl_complex_arcsec_real($x) - return the complex arcsecant of the real number $x
gsl_complex_arccsc($c) - return the complex arccosecant of the complex number $c
gsl_complex_arccsc_real($x) - return the complex arccosecant of the real number $x
gsl_complex_arctan($c) - return the complex arctangent of the complex number $c
gsl_complex_arccot($c) - return the complex arccotangent of the complex number $c
gsl_complex_sinh($c) - return the complex hyperbolic sine of the complex number $c
gsl_complex_cosh($c) - return the complex hyperbolic cosine of the complex number $cy
gsl_complex_sech($c) - return the complex hyperbolic secant of the complex number $c
gsl_complex_csch($c) - return the complex hyperbolic cosecant of the complex number $c
gsl_complex_tanh($c) - return the complex hyperbolic tangent of the complex number $c
gsl_complex_coth($c) - return the complex hyperbolic cotangent of the complex number $c
gsl_complex_arcsinh($c) - return the complex hyperbolic arcsine of the complex number $c
gsl_complex_arccosh($c) - return the complex hyperbolic arccosine of the complex number $c
gsl_complex_arccosh_real($x) - return the complex hyperbolic arccosine of the real number $x
gsl_complex_arcsech($c) - return the complex hyperbolic arcsecant of the complex number $c
gsl_complex_arccsch($c) - return the complex hyperbolic arccosecant of the complex number $c
gsl_complex_arctanh($c) - return the complex hyperbolic arctangent of the complex number $c
gsl_complex_arctanh_real($x) - return the complex hyperbolic arctangent of the real number $x
gsl_complex_arccoth($c) - return the complex hyperbolic arccotangent of the complex number $c
gsl_real($z) - return the real part of $z
gsl_imag($z) - return the imaginary part of $z
gsl_parts($z) - return a list of the real and imaginary parts of $z
gsl_set_real($z, $x) - sets the real part of $z to $x
gsl_set_imag($z, $y) - sets the imaginary part of $z to $y
gsl_set_complex($z, $x, $h) - sets the real part of $z to $x and the imaginary part to $y

You have to add the functions you want to use inside the qw /put_funtion_here / with spaces between each function. You can also write use Math::GSL::Complex qw/:all/ to use all avaible functions of the module.

For more informations on the functions, we refer you to the GSL offcial documentation: http://www.gnu.org/software/gsl/manual/html_node/ Tip : search on google: site:http://www.gnu.org/software/gsl/manual/html_node/ name_of_the_function_you_want

EXAMPLES

This code defines $z as 6 + 4*I, takes the complex conjugate of that number, then prints it out.

my $z = gsl_complex_rect(6,4);
my $y = gsl_complex_conjugate($z);
my ($real, $imag) = gsl_parts($y);

This code defines $z as 5 + 3*I, multiplies it by 2 and then prints it out.

my $x = gsl_complex_rect(5,3);
my $z = gsl_complex_mul_real($x, 2);
my $real = gsl_real($z);
my $imag = gsl_imag($z);

AUTHORS

Jonathan Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>

COPYRIGHT AND LICENSE

Copyright (C) 2008 Jonathan Leto and Thierry Moisan

This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.