NAME

Math::PlanePath::TerdragonRounded -- triangular dragon curve, with rounded corners

SYNOPSIS

use Math::PlanePath::TerdragonRounded;
my $path = Math::PlanePath::TerdragonRounded->new;
my ($x, $y) = $path->n_to_xy (123);

# or another radix digits ...
my $path5 = Math::PlanePath::TerdragonRounded->new (radix => 5);

DESCRIPTION

This is a version of the terdragon curve with rounded-off corners,

...         44----43                                   14
  \        /        \
   46----45     .    42                                13
                    /
       .    40----41                                   12
           /
         39     .    24----23          20----19        11
           \        /        \        /        \
       .    38    25     .    22----21     .    18     10
           /        \                          /
   36----37     .    26----27     .    16----17         9
  /                          \        /
35     .    32----31     .    28    15     .            8
  \        /        \        /        \
   34----33          30----29     .    14               7
                                      /
                         .    12----13     .            6
                             /
                           11     .     8-----7         5
                             \        /        \
                              10-----9     .     6      4
                                               /
                                  .     4-----5         3
                                      /
                                     3                  2
                                      \
                                  .     2               1
                                      /
                         .     0-----1     .       <- Y=0

 ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
-8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8

The plain TerdragonCurve is tripled in size and two points on each 3-long edge are visited by the TerdragonRounded here.

Arms

Multiple copies of the curve can be selected, each advancing successively. The curve is 1/6 of the plane (like the plain terdragon) and 6 arms rotated by 60, 120, 180, 240 and 300 degrees mesh together perfectly.

arms => 6 begins as follows. N=0,6,12,18,etc is the first arm (the curve shown above), then N=1,7,13,19 the second copy rotated 60 degrees, N=2,8,14,20 the third rotated 120, etc.

arms=>6              43----37          72--...
                    /        \        /
           ...    49          31    66          48----42
           /        \        /        \        /        \
         73          55    25          60----54          36
           \        /        \                          /
            67----61          19----13          24----30
                                      \        /
   38----32          14-----8           7    18          71---...
  /        \        /        \        /        \        /
44          26----20           2     1          12    65
  \                                            /        \
   50----56           9-----3     .     0-----6          59----53
           \        /                                            \
...         62    15           4     5          23----29          47
  \        /        \        /        \        /        \        /
   74----68          21    10          11----17          35----41
                    /        \
            33----27          16----22          64----70
           /                          \        /        \
         39          57----63          28    58          76
           \        /        \        /        \        /
            45----51          69    34          52    ...
                             /        \        /
                      ...--75          40----46

 ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
-11-10-9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8  9 10 11

FUNCTIONS

See "FUNCTIONS" in Math::PlanePath for the behaviour common to all path classes.

$path = Math::PlanePath::TerdragonRounded->new ()
$path = Math::PlanePath::TerdragonRounded->new (arms => $count)

Create and return a new path object.

($x,$y) = $path->n_to_xy ($n)

Return the X,Y coordinates of point number $n on the path. Points begin at 0 and if $n < 0 then the return is an empty list.

Fractional positions give an X,Y position along a straight line between the integer positions.

Level Methods

($n_lo, $n_hi) = $path->level_to_n_range($level)

Return (0, 2 * 3**$level - 1), or for multiple arms return (0, 2 * $arms * 3**$level - 1).

These level ranges are like TerdragonMidpoint but with 2 points on each line segment terdragon line segment instead of 1.

FORMULAS

X,Y Visited

When arms=6 all "hex centred" points of the plane are visited, being those points with

X+3Y mod 6 == 2 or 4        "hex_centred"

SEE ALSO

Math::PlanePath, Math::PlanePath::TerdragonCurve, Math::PlanePath::TerdragonMidpoint, Math::PlanePath::DragonRounded

Jorg Arndt http://www.jjj.de/fxt/#fxtbook section 1.31.4 "Terdragon and Hexdragon", where this rounded terdragon is called hexdragon.

HOME PAGE

http://user42.tuxfamily.org/math-planepath/index.html

LICENSE

Copyright 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version.

Math-PlanePath is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.