NAME
Paws::SageMaker::CreateAutoMLJob - Arguments for method CreateAutoMLJob on Paws::SageMaker
DESCRIPTION
This class represents the parameters used for calling the method CreateAutoMLJob on the Amazon SageMaker Service service. Use the attributes of this class as arguments to method CreateAutoMLJob.
You shouldn't make instances of this class. Each attribute should be used as a named argument in the call to CreateAutoMLJob.
SYNOPSIS
my $api.sagemaker = Paws->service('SageMaker');
my $CreateAutoMLJobResponse = $api . sagemaker->CreateAutoMLJob(
AutoMLJobName => 'MyAutoMLJobName',
InputDataConfig => [
{
DataSource => {
S3DataSource => {
S3DataType => 'ManifestFile', # values: ManifestFile, S3Prefix
S3Uri => 'MyS3Uri', # max: 1024
},
},
TargetAttributeName => 'MyTargetAttributeName', # min: 1
CompressionType => 'None', # values: None, Gzip; OPTIONAL
},
...
],
OutputDataConfig => {
S3OutputPath => 'MyS3Uri', # max: 1024
KmsKeyId => 'MyKmsKeyId', # max: 2048; OPTIONAL
},
RoleArn => 'MyRoleArn',
AutoMLJobConfig => {
CompletionCriteria => {
MaxAutoMLJobRuntimeInSeconds => 1, # min: 1; OPTIONAL
MaxCandidates => 1, # min: 1; OPTIONAL
MaxRuntimePerTrainingJobInSeconds => 1, # min: 1; OPTIONAL
}, # OPTIONAL
SecurityConfig => {
EnableInterContainerTrafficEncryption => 1, # OPTIONAL
VolumeKmsKeyId => 'MyKmsKeyId', # max: 2048; OPTIONAL
VpcConfig => {
SecurityGroupIds => [
'MySecurityGroupId', ... # max: 32
], # min: 1, max: 5
Subnets => [
'MySubnetId', ... # max: 32
], # min: 1, max: 16
}, # OPTIONAL
}, # OPTIONAL
}, # OPTIONAL
AutoMLJobObjective => {
MetricName => 'Accuracy', # values: Accuracy, MSE, F1, F1macro, AUC
}, # OPTIONAL
GenerateCandidateDefinitionsOnly => 1, # OPTIONAL
ModelDeployConfig => {
AutoGenerateEndpointName => 1, # OPTIONAL
EndpointName => 'MyEndpointName', # max: 63; OPTIONAL
}, # OPTIONAL
ProblemType => 'BinaryClassification', # OPTIONAL
Tags => [
{
Key => 'MyTagKey', # min: 1, max: 128
Value => 'MyTagValue', # max: 256
},
...
], # OPTIONAL
);
# Results:
my $AutoMLJobArn = $CreateAutoMLJobResponse->AutoMLJobArn;
# Returns a L<Paws::SageMaker::CreateAutoMLJobResponse> object.
Values for attributes that are native types (Int, String, Float, etc) can passed as-is (scalar values). Values for complex Types (objects) can be passed as a HashRef. The keys and values of the hashref will be used to instance the underlying object. For the AWS API documentation, see https://docs.aws.amazon.com/goto/WebAPI/api.sagemaker/CreateAutoMLJob
ATTRIBUTES
AutoMLJobConfig => Paws::SageMaker::AutoMLJobConfig
Contains CompletionCriteria
and SecurityConfig
settings for the AutoML job.
REQUIRED AutoMLJobName => Str
Identifies an Autopilot job. The name must be unique to your account and is case-insensitive.
AutoMLJobObjective => Paws::SageMaker::AutoMLJobObjective
Defines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it.
GenerateCandidateDefinitionsOnly => Bool
Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
REQUIRED InputDataConfig => ArrayRef[Paws::SageMaker::AutoMLChannel]
An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig
supported by . Format(s) supported: CSV. Minimum of 500 rows.
ModelDeployConfig => Paws::SageMaker::ModelDeployConfig
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
REQUIRED OutputDataConfig => Paws::SageMaker::AutoMLOutputDataConfig
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
ProblemType => Str
Defines the type of supervised learning available for the candidates. Options include: BinaryClassification
, MulticlassClassification
, and Regression
. For more information, see Amazon SageMaker Autopilot problem types and algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html).
Valid values are: "BinaryClassification"
, "MulticlassClassification"
, "Regression"
REQUIRED RoleArn => Str
The ARN of the role that is used to access the data.
Tags => ArrayRef[Paws::SageMaker::Tag]
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
SEE ALSO
This class forms part of Paws, documenting arguments for method CreateAutoMLJob in Paws::SageMaker
BUGS and CONTRIBUTIONS
The source code is located here: https://github.com/pplu/aws-sdk-perl
Please report bugs to: https://github.com/pplu/aws-sdk-perl/issues