File:	examples/ex_aln.pl
	Author:	Josiah Bryan, jdb@wcoil.com
	Desc:
	
	This is a simple example of a _basic_ ALN implementation in
	under 210 lines of code. In this demo we make use of the 
	custom node connector as described in the POD. We also 
	insert our own method over the node's internal adjust_weight()
	method to make ALN learning a bit easire. This demo also adds
	a temporary method to the network to print the logical type of 
	each node, called print_aln();

	print_aln() prints simple diagram of the
	network similar to this (this is for a $net=Tree(8,1) with 
	$net->learn([1,1,0,1,0,1,1,1],[0]), and each line represents 
	a layer):
	
	L R L L L L L L
	OR OR OR OR
	OR OR
	AND
	
	All the standard methods that work on AI::NeuralNet::Mesh work
	on the object returned by Tree(). load() and save() will correctly
	preserve the gate structure and types of your network. learn_set()
	and everything else works pretty much as expected. Only thing
	that is useless is the crunch() method, as this only takes binary
	inputs. But...for those of you who couldnt live without integers
	in your network...I'm going to create a small package in the next 
	week, AI::NeuralNet::ALNTree, from this code. It will which includes 
	a integer-vectorizer (convert your integers into bit vectors), a bit 
	vector class to play with, as well as support for concating and 
	learning bit vectors. But, for now, enjoy this!
	
	This file contains just a simple, functional, ALN implementation. 
				
								Enjoy!
          

1 POD Error

The following errors were encountered while parsing the POD:

Around line 1:

=begin without a target?