NAME

PDL::LinearAlgebra - Linear Algebra utils for PDL

SYNOPSIS

use PDL::LinearAlgebra;

$a = random (100,100);
($U, $s, $V) = mdsvd($a);

DESCRIPTION

This module provides a convenient interface to PDL::LinearAlgebra::Real and PDL::LinearAlgebra::Complex.

FUNCTIONS

setlaerror

Set action type when error is encountered, returns previous type. Available values are NO, WARN and BARF (predefined constants). If, for example, in computation of the inverse, singularity is detected, the routine can silently return values from computation (see manuals), warn about singularity or barf. BARF is the default value.

 $a = sequence(5,5);
 $err = setlaerror(NO);
 ($inv, $info)= minv($a);
 if ($info){
 	# Change the diagonal (the inverse doesn't exist but it's an example)
 	$a->diagonal(0,1)+=1e-8;
	($inv, $info)= minv($a);
 }
 if ($info){
 	print "Can't compute the inverse\n";
 }
 else{
 	print "Inverse of \$a is $inv";
 }
 setlaerror($err);

getlaerror

Get error type.

0 => NO,
1 => WARN,
2 => BARF

t

PDL = t(PDL, SCALAR(conj))
conj : Conjugate Transpose = 1 | Transpose = 0, default = 1;

Convenient function for transposing real or complex 2D array(s). For PDL::Complex, if conj is true returns conjugate transpose array(s) and doesn't support dataflow. Supports threading.

issym

PDL = issym(PDL, SCALAR|PDL(tol),SCALAR(hermitian))
tol : tolerance value, default: 1e-8 for double else 1e-5 
hermitian : Hermitian = 1 | Symmetric = 0, default = 1;

Check symmetricity/Hermitianicity of matrix. Supports threading.

diag

Return i-th diagonal if matrix in entry or matrix with i-th diagonal with entry. I-th diagonal returned flows data back&forth. Can be used as lvalue subs if your perl supports it. Supports threading.

PDL = diag(PDL, SCALAR(i), SCALAR(vector)))
i	: i-th diagonal, default = 0
vector	: create diagonal matrices by threading over row vectors, default = 0
my $a = random(5,5);
my $diag  = diag($a,2);
# If your perl support lvaluable subroutines.
$a->diag(-2) .= pdl(1,2,3);
# Construct a (5,5,5) PDL (5 matrices) with
# diagonals from row vectors of $a
$a->diag(0,1)

tritosym

Return symmetric or Hermitian matrix from lower or upper triangular matrix. Supports inplace and threading. Uses tricpy or ctricpy from Lapack.

PDL = tritosym(PDL, SCALAR(uplo), SCALAR(conj))
uplo : UPPER = 0 | LOWER = 1, default = 0
conj : Hermitian = 1 | Symmetric = 0, default = 1;
# Assume $a is symmetric triangular
my $a = random(10,10);
my $b = tritosym($a);

positivise

Return entry pdl with changed sign by row so that average of positive sign > 0. In other words thread among dimension 1 and row = -row if Sum(sign(row)) < 0. Works inplace.

my $a = random(10,10);
$a -= 0.5;
$a->xchg(0,1)->inplace->positivise;

mcrossprod

Compute the cross-product of two matrix: A' x B. If only one matrix is given, take B to be the same as A. Supports threading. Uses crossprod or ccrossprod.

PDL = mcrossprod(PDL(A), (PDL(B))
my $a = random(10,10);
my $crossproduct = mcrossprod($a);

mrank

Compute the rank of a matrix, using a singular value decomposition. from Lapack.

SCALAR = mrank(PDL, SCALAR(TOL))
TOL:	tolerance value, default : mnorm(dims(PDL),'inf') * mnorm(PDL) * EPS
my $a = random(10,10);
my $b = mrank($a, 1e-5);

mnorm

Compute norm of real or complex matrix Supports threading.

PDL(norm) = mnorm(PDL, SCALAR(ord));
ord : 
	0|'inf' : Infinity norm
	1|'one' : One norm
	2|'two'	: norm 2 (default)
	3|'fro' : frobenius norm
my $a = random(10,10);
my $norm = mnrom($a);

mdet

Compute determinant of a general square matrix using LU factorization. Supports threading. Uses getrf or cgetrf from Lapack.

PDL(determinant) = mdet(PDL);
my $a = random(10,10);
my $det = mdet($a);

mposdet

Compute determinant of a symmetric or Hermitian positive definite square matrix using Cholesky factorization. Supports threading. Uses potrf or cpotrf from Lapack.

(PDL, PDL) = mposdet(PDL, SCALAR)
SCALAR : UPPER = 0 | LOWER = 1, default = 0
my $a = random(10,10);
my $det = mposdet($a);

mcond

Compute the condition number (two-norm) of a general matrix.

The condition number (two-norm) is defined:

norm (a) * norm (inv (a)).

Uses a singular value decomposition. Supports threading.

PDL = mcond(PDL)
my $a = random(10,10);
my $cond = mcond($a);

mrcond

Estimate the reciprocal of condition number of a general square matrix using LU factorization in either the 1-norm or the infinity-norm.

The reciprocal condition number is defined:

1/(norm (a) * norm (inv (a)))

Supports threading.

PDL = mrcond(PDL, SCALAR(ord))
ord : 
	0 : Infinity norm (default)
	1 : One norm
my $a = random(10,10);
my $rcond = mrcond($a,1);

morth

Return an orthonormal basis of the range space of matrix A.

PDL = morth(PDL(A), SCALAR(tol))
tol : tolerance for determining rank, default: 1e-8 for double else 1e-5 
my $a = random(10,10);
my $ortho = morth($a, 1e-8);

mnull

Return an orthonormal basis of the null space of matrix A.

PDL = mnull(PDL(A), SCALAR(tol))
tol : tolerance for determining rank, default: 1e-8 for double else 1e-5 
my $a = random(10,10);
my $null = mnull($a, 1e-8);

minv

Compute inverse of a general square matrix using LU factorization. Supports inplace and threading. Uses getrf and getri or cgetrf and cgetri from Lapack and return inverse, info in array context.

PDL(inv)  = minv(PDL)
my $a = random(10,10);
my $inv = minv($a);

mtriinv

Compute inverse of a triangular matrix. Supports inplace and threading. Uses trtri or ctrtri from Lapack. Returns inverse, info in array context.

(PDL, PDL(info))) = mtriinv(PDL, SCALAR(uplo), SCALAR|PDL(diag))
uplo : UPPER = 0 | LOWER = 1, default = 0
diag : UNITARY DIAGONAL = 1, default = 0
# Assume $a is upper triangular
my $a = random(10,10);
my $inv = mtriinv($a);

msyminv

Compute inverse of a symmetric square matrix using the Bunch-Kaufman diagonal pivoting method. Supports inplace and threading. Uses sytrf and sytri or csytrf and csytri from Lapack and returns inverse, info in array context.

(PDL, (PDL(info))) = msyminv(PDL, SCALAR|PDL(uplo))
uplo : UPPER = 0 | LOWER = 1, default = 0
# Assume $a is symmetric
my $a = random(10,10);
my $inv = msyminv($a);

mposinv

Compute inverse of a symmetric positive definite square matrix using Cholesky factorization. Supports inplace and threading. Uses potrf and potri or cpotrf and cpotri from Lapack and returns inverse, info in array context.

(PDL, (PDL(info))) = mposinv(PDL, SCALAR|PDL(uplo))
uplo : UPPER = 0 | LOWER = 1, default = 0
# Assume $a is symmetric positive definite
my $a = random(10,10);
$a = $a->crossprod($a);
my $inv = mposinv($a);

mpinv

Compute pseudo-inverse (Moore-Penrose) of a general matrix.

PDL(pseudo-inv)  = mpinv(PDL, SCALAR(tol))
TOL:	tolerance value, default : mnorm(dims(PDL),'inf') * mnorm(PDL) * EPS
my $a = random(5,10);
my $inv = mpinv($a);

mlu

Compute LU factorization. Uses getrf or cgetrf from Lapack and return L, U, pivot and info.

(PDL(l), PDL(u), PDL(pivot), PDL(info)) = mlu(PDL)
my $a = random(10,10);
($l, $u, $pivot, $info) = mlu($a);

mchol

Compute Cholesky decomposition of a symmetric matrix also knows as symmetric square root. If inplace flag is set, overwrite the leading upper or lower triangular part of A else returns triangular matrix. Returns cholesky, info in array context. Supports threading. Uses potrf or cpotrf from Lapack.

PDL(Cholesky) = mchol(PDL, SCALAR)
SCALAR : UPPER = 0 | LOWER = 1, default = 0
my $a = random(10,10);
$a = crossprod($a, $a);
my $u  = mchol($a);

mhessen

Reduce a square matrix to Hessenberg form H and orthogonal matrix Q.

It reduces a general matrix A to upper Hessenberg form H by an orthogonal similarity transformation:

Q' x A x Q = H

or

A = Q x H x Q'

Uses gehrd and orghr or cgehrd and cunghr from Lapack and returns H in scalar context else H and Q.

(PDL(h), (PDL(q))) = mhessen(PDL)
my $a = random(10,10);
($h, $q) = mhessen($a);

mschur

Compute Schur form, works inplace.

A = Z x T x Z'

Supports threading for unordered eigenvalues. Uses gees or cgees from Lapack and returns schur(T) in scalar context.

 ( PDL(schur), (PDL(eigenvalues), (PDL(left schur vectors), PDL(right schur vectors), $sdim), $info) ) = mschur(PDL(A), SCALAR(schur vector),SCALAR(left eigenvector), SCALAR(right eigenvector),SCALAR(select_func), SCALAR(backtransform), SCALAR(norm))
 schur vector	     : Schur vectors returned, none = 0 | all = 1 | selected = 2, default = 0
 left eigenvector    : Left eigenvectors returned, none = 0 | all = 1 | selected = 2, default = 0
 right eigenvector   : Right eigenvectors returned, none = 0 | all = 1 | selected = 2, default = 0
 select_func	     : Select_func is used to select eigenvalues to sort
		       to the top left of the Schur form.
		       An eigenvalue is selected if PerlInt select_func(PDL::Complex(w)) is true;
		       Note that a selected complex eigenvalue may no longer
		       satisfy select_func(PDL::Complex(w)) = 1 after ordering, since
		       ordering may change the value of complex eigenvalues
		       (especially if the eigenvalue is ill-conditioned).
		       All eigenvalues/vectors are selected if select_func is undefined. 
 backtransform	     : Whether or not backtransforms eigenvectors to those of A.
 		       Only supported if schur vectors are computed, default = 1.
 norm                : Whether or not computed eigenvectors are normalized to have Euclidean norm equal to
		       1 and largest component real, default = 1

 Returned values     :
		       Schur form T (SCALAR CONTEXT),
		       eigenvalues,
		       Schur vectors (Z) if required,
		       left eigenvectors if required
		       right eigenvectors if required
		       sdim: Number of eigenvalues selected if select_func is defined.
		       info: Info output from gees/cgees.	    	
 my $a = random(10,10);
 my $schur  = mschur($a);
 sub select{
 	my $m = shift;
	# select "discrete time" eigenspace
 	return $m->Cabs < 1 ? 1 : 0;
 }
 my ($schur,$eigen, $svectors,$evectors)  = mschur($a,1,1,0,\&select); 

mschurx

Compute Schur form, works inplace. Uses gees or cgees from Lapack and returns schur(T) in scalar context.

 ( PDL(schur) (,PDL(eigenvalues))  (, PDL(schur vectors), HASH(result)) ) = mschurx(PDL, SCALAR(schur vector), SCALAR(left eigenvector), SCALAR(right eigenvector),SCALAR(select_func), SCALAR(sense), SCALAR(backtransform), SCALAR(norm))
 schur vector	     : Schur vectors returned, none = 0 | all = 1 | selected = 2, default = 0
 left eigenvector    : Left eigenvectors returned, none = 0 | all = 1 | selected = 2, default = 0
 right eigenvector   : Right eigenvectors returned, none = 0 | all = 1 | selected = 2, default = 0
 select_func         : Select_func is used to select eigenvalues to sort
		       to the top left of the Schur form.
		       An eigenvalue if PerlInt select_func(PDL::Complex(w)) is true;
		       Note that a selected complex eigenvalue may no longer
		       satisfy select_func(PDL::Complex(w)) = 1 after ordering, since
		       ordering may change the value of complex eigenvalues
		       (especially if the eigenvalue is ill-conditioned).
		       All  eigenvalues/vectors are selected if select_func is undefined. 
 sense		     : Determines which condition number will be computed.
			0: None are computed
			1: Computed for average of selected eigenvalues only
			2: Computed for selected right invariant subspace only
			3: Computed for both
			If select_func is undefined, sense is not used.
 backtransform	     : Whether or not backtransforms eigenvectors to those of A.
 		       Only supported if schur vector are computed, default = 1
 norm                : Whether or not computed eigenvectors are normalized to have Euclidean norm equal to
		       1 and largest component real, default = 1

 Returned values     :
		       Schur form T (SCALAR CONTEXT),
		       eigenvalues,
		       Schur vectors if required,
		       HASH{VL}: left eigenvectors if required
		       HASH{VR}: right eigenvectors if required
		       HASH{info}: info output from gees/cgees.
		       if select_func is defined:
			HASH{n}: number of eigenvalues selected,
			HASH{rconde}: condition number for the average of 
			the selected eigenvalues if requested,
			HASH{rcondv}: condition number for the selected 
			right invariant subspace if requested.
 my $a = random(10,10);
 my $schur  = mschurx($a);
 sub select{
 	my $m = shift;
	# select "discrete time" eigenspace
 	return $m->Cabs < 1 ? 1 : 0;
 }
 my ($schur,$eigen, $vectors,%ret)  = mschurx($a,1,0,0,\&select); 

mgschur

Compute generalized Schur decomposition of the pair (A,B).

A = Q x S x Z'
B = Q x T x Z'

Uses gges or cgges from Lapack.

 ( PDL(schur S), PDL(schur T), PDL(alpha), PDL(beta), HASH{result}) = mgschur(PDL(A), PDL(B), SCALAR(left schur vector),SCALAR(right schur vector),SCALAR(left eigenvector), SCALAR(right eigenvector), SCALAR(select_func), SCALAR(backtransform), SCALAR(scale))
 left schur vector   : Left Schur vectors returned, none = 0 | all = 1 | selected = 2, default = 0
 right schur vector  : Right Schur vectors returned, none = 0 | all = 1 | selected = 2, default = 0
 left eigenvector    : Left eigenvectors returned, none = 0 | all = 1 | selected = 2, default = 0
 right eigenvector   : Right eigenvectors returned, none = 0 | all = 1 | selected = 2, default = 0
 select_func	     : Select_func is used to select eigenvalues to sort.
		       to the top left of the Schur form.
		       An eigenvalue w = wr(j)+sqrt(-1)*wi(j) is selected if
		       PerlInt select_func(PDL::Complex(alpha),PDL | PDL::Complex (beta)) is true;
		       Note that a selected complex eigenvalue may no longer
		       satisfy select_func = 1 after ordering, since
		       ordering may change the value of complex eigenvalues
		       (especially if the eigenvalue is ill-conditioned).
		       All eigenvalues/vectors are selected if select_func is undefined. 
 backtransform 	     : Whether or not backtransforms eigenvectors to those of (A,B).
 		       Only supported if right and/or left schur vector are computed, 
 scale               : Whether or not computed eigenvectors are scaled so the largest component
		       will have abs(real part) + abs(imag. part) = 1, default = 1

 Returned values     :
		       Schur form S,
		       Schur form T,
		       alpha,
		       beta (eigenvalues = alpha/beta),
		       HASH{info}: info output from gges/cgges.
		       HASH{SL}: left Schur vectors if required
		       HASH{SR}: right Schur vectors if required
		       HASH{VL}: left eigenvectors if required
		       HASH{VR}: right eigenvectors if required
		       HASH{n} : Number of eigenvalues selected if select_func is defined.
		       info: Info output from gees/cgees.	    	
my $a = random(10,10);
my $b = random(10,10);
my ($S,$T) = mgschur($a,$b);
sub select{
	my ($alpha,$beta) = @_;
	return $alpha->Cabs < abs($beta) ? 1 : 0;
}
my ($S, $T, $alpha, $beta, %res)  = mgschur( $a, $b, 1, 1, 1, 1,\&select); 

mgschurx

Compute generalized Schur decomposition of the pair (A,B).

A = Q x S x Z'
B = Q x T x Z'

Uses ggesx or cggesx from Lapack.

 ( PDL(schur S), PDL(schur T), PDL(alpha), PDL(beta), HASH{result}) = mgschurx(PDL(A), PDL(B), SCALAR(left schur vector),SCALAR(right schur vector),SCALAR(left eigenvector), SCALAR(right eigenvector), SCALAR(select_func), SCALAR(sense), SCALAR(backtransform), SCALAR(scale))
 left schur vector   : Left Schur vectors returned, none = 0 | all = 1 | selected = 2, default = 0
 right schur vector  : Right Schur vectors returned, none = 0 | all = 1 | selected = 2, default = 0
 left eigenvector    : Left eigenvectors returned, none = 0 | all = 1 | selected = 2, default = 0
 right eigenvector   : Right eigenvectors returned, none = 0 | all = 1 | selected = 2, default = 0
 select_func	     : Select_func is used to select eigenvalues to sort.
		       to the top left of the Schur form.
		       An eigenvalue w = wr(j)+sqrt(-1)*wi(j) is selected if
		       PerlInt select_func(PDL::Complex(alpha),PDL | PDL::Complex (beta)) is true;
		       Note that a selected complex eigenvalue may no longer
		       satisfy select_func = 1 after ordering, since
		       ordering may change the value of complex eigenvalues
		       (especially if the eigenvalue is ill-conditioned).
		       All eigenvalues/vectors are selected if select_func is undefined. 
 sense		     : Determines which condition number will be computed.
			0: None are computed
			1: Computed for average of selected eigenvalues only
			2: Computed for selected deflating subspaces only
			3: Computed for both
			If select_func is undefined, sense is not used.

 backtransform 	     : Whether or not backtransforms eigenvectors to those of (A,B).
 		       Only supported if right and/or left schur vector are computed, default = 1
 scale               : Whether or not computed eigenvectors are scaled so the largest component
		       will have abs(real part) + abs(imag. part) = 1, default = 1

 Returned values     :
		       Schur form S,
		       Schur form T,
		       alpha,
		       beta (eigenvalues = alpha/beta),
		       HASH{info}: info output from gges/cgges.
		       HASH{SL}: left Schur vectors if required
		       HASH{SR}: right Schur vectors if required
		       HASH{VL}: left eigenvectors if required
		       HASH{VR}: right eigenvectors if required
		       HASH{n} : Number of eigenvalues selected if select_func is defined.
		       info: Info output from gees/cgees.	    	
 my $a = random(10,10);
 my $schur  = mschur($a);
 sub select{
 	my $m = shift;
	# select "discrete time" eigenspace
 	return $m->Cabs < 1 ? 1 : 0;
 }
 my ($schur, $eigen, $vectors)  = mschur($a,1,0,1,\&select); 

mqr

Compute QR decomposition. For complex number needs object of type PDL::Complex. Uses geqrf and orgqr or cgeqrf and cungqr from Lapack and returns Q in scalar context.

(PDL(Q), PDL(R), PDL(info)) = mqr(PDL, SCALAR)
SCALAR : ECONOMIC = 0 | FULL = 1, default = 0
my $a = random(10,10);
my ( $q, $r )  = mqr($a);
# Can compute full decomposition if row > col
$a = random(5,7);
( $q, $r )  = $a->mqr(1);

mrq

Compute RQ decomposition. For complex number needs object of type PDL::Complex. Uses gerqf and orgrq or cgerqf and cungrq from Lapack and returns Q in scalar context.

(PDL(R), PDL(Q), PDL(info)) = mrq(PDL, SCALAR)
SCALAR : ECONOMIC = 0 | FULL = 1, default = 0
my $a = random(10,10);
my ( $r, $q )  = mrq($a);
# Can compute full decomposition if row < col
$a = random(5,7);
( $r, $q )  = $a->mrq(1);

mql

Compute QL decomposition. For complex number needs object of type PDL::Complex. Uses geqlf and orgql or cgeqlf and cungql from Lapack and returns Q in scalar context.

(PDL(Q), PDL(L), PDL(info)) = mql(PDL, SCALAR)
SCALAR : ECONOMIC = 0 | FULL = 1, default = 0
my $a = random(10,10);
my ( $q, $l )  = mql($a);
# Can compute full decomposition if row > col
$a = random(5,7);
( $q, $l )  = $a->mql(1);

mlq

Compute LQ decomposition. For complex number needs object of type PDL::Complex. Uses gelqf and orglq or cgelqf and cunglq from Lapack and returns Q in scalar context.

( PDL(L), PDL(Q), PDL(info) ) = mlq(PDL, SCALAR)
SCALAR : ECONOMIC = 0 | FULL = 1, default = 0
my $a = random(10,10);
my ( $l, $q )  = mlq($a);
# Can compute full decomposition if row < col
$a = random(5,7);
( $l, $q )  = $a->mlq(1);

msolve

Solve linear sytem of equations using LU decomposition.

A * X = B

Returns X in scalar context else X, LU, pivot vector and info. B is overwrited by X if its inplace flag is set. Supports threading. Uses gesv or cgesv from Lapack.

(PDL(X), (PDL(LU), PDL(pivot), PDL(info))) = msolve(PDL(A), PDL(B) )
my $a = random(5,5);
my $b = random(10,5);
my $X = msolve($a, $b);

msolvex

Solve linear sytem of equations using LU decomposition.

A * X = B

Can optionnally equilibrate the matrix. Uses gesvx or cgesvx from Lapack.

 (PDL, (HASH(result))) = msolvex(PDL(A), PDL(B), HASH(options))
 where options are:
 transpose:	solves A' * X = B
		0: false
		1: true
 equilibrate:	equilibrates A if necessary.
		form equilibration is returned in HASH{'equilibration'}:
			0: no equilibration
			1: row equilibration
			2: column equilibration
		row scale factors are returned in HASH{'row'} 
		column scale factors are returned in HASH{'column'} 
		0: false
		1: true
 LU:    	returns lu decomposition in HASH{LU}
		0: false
		1: true
 A:		returns scaled A if equilibration was done in HASH{A}  
		0: false
		1: true
 B:		returns scaled B if equilibration was done in HASH{B} 
		0: false
		1: true
 Returned values:
		X (SCALAR CONTEXT),
		HASH{'pivot'}:
	    	 Pivot indice from LU factorization
		HASH{'rcondition'}:
	    	 Reciprocal condition of the matrix
		HASH{'ferror'}:
	    	 Forward error bound 
		HASH{'berror'}:
		 Componentwise relative backward error
		HASH{'rpvgrw'}:
		 Reciprocal pivot growth factor
		HASH{'info'}:
	    	 Info: output from gesvx
 my $a = random(10,10);
 my $b = random(5,10);
 my %options = (
 		LU=>1,
 		equilibrate => 1,
		);
 my( $X, %result) = msolvex($a,$b,%options);

mtrisolve

Solve linear sytem of equations with triangular matrix A.

A * X = B  or A' * X = B

B is overwrited by X if its inplace flag is set. Supports threading. Uses trtrs or ctrtrs from Lapack.

(PDL(X), (PDL(info)) = mtrisolve(PDL(A), SCALAR(uplo), PDL(B), SCALAR(trans), SCALAR(diag))
uplo	: UPPER  = 0 | LOWER = 1
trans	: NOTRANSPOSE  = 0 | TRANSPOSE = 1, default = 0
uplo	: UNITARY DIAGONAL = 1, default = 0
# Assume $a is upper triagonal
my $a = random(5,5);
my $b = random(5,10);
my $X = mtrisolve($a, 0, $b);

msymsolve

Solve linear sytem of equations using diagonal pivoting method with symmetric matrix A.

A * X = B

Returns X in scalar context else X, block diagonal matrix D (and the multipliers), pivot vector an info. B is overwrited by X if its inplace flag is set. Supports threading. Uses sysv or csysv from Lapack.

(PDL(X), ( PDL(D), PDL(pivot), PDL(info) ) ) = msymsolve(PDL(A), SCALAR(uplo), PDL(B) )
uplo : UPPER  = 0 | LOWER = 1, default = 0
# Assume $a is symmetric
my $a = random(5,5);
my $b = random(5,10);
my $X = msymsolve($a, 0, $b);

msymsolvex

Solve linear sytem of equations using diagonal pivoting method with symmetric matrix A.

A * X = B

Uses sysvx or csysvx from Lapack.

 (PDL, (HASH(result))) = msymsolvex(PDL(A), SCALAR (uplo), PDL(B), SCALAR(d))
 uplo : UPPER  = 0 | LOWER = 1, default = 0
 d    : whether return diagonal matrix d and pivot vector
 	FALSE  = 0 | TRUE = 1, default = 0 
 Returned values:
		X (SCALAR CONTEXT),
		HASH{'D'}:
		 Block diagonal matrix D (and the multipliers) (if requested)
		HASH{'pivot'}:
	    	 Pivot indice from LU factorization (if requested)
		HASH{'rcondition'}:
	    	 Reciprocal condition of the matrix
		HASH{'ferror'}:
	    	 Forward error bound 
		HASH{'berror'}:
		 Componentwise relative backward error
		HASH{'info'}:
	    	 Info: output from sysvx
# Assume $a is symmetric
my $a = random(10,10);
my $b = random(5,10);
mu( $X, %result) = msolvex($a, 0, $b);

mpossolve

Solve linear sytem of equations using Cholesky decomposition with symmetric positive definite matrix A.

A * X = B

Returns X in scalar context else X, U or L and info. B is overwrited by X if its inplace flag is set. Supports threading. Uses posv or cposv from Lapack.

(PDL, (PDL, PDL, PDL)) = mpossolve(PDL(A), SCALAR(uplo), PDL(B) )
uplo : UPPER  = 0 | LOWER = 1, default = 0
# asume $a is symmetric positive definite
my $a = random(5,5);
my $b = random(5,10);
my $X = mpossolve($a, 0, $b);

mpossolvex

Solve linear sytem of equations using Cholesky decomposition with symmetric positive definite matrix A

A * X = B

Can optionnally equilibrate the matrix. Uses posvx or cposvx from Lapack.

 (PDL, (HASH(result))) = mpossolvex(PDL(A), SCARA(uplo), PDL(B), HASH(options))
 uplo : UPPER  = 0 | LOWER = 1, default = 0
 where options are:
 equilibrate:	equilibrates A if necessary.
		form equilibration is returned in HASH{'equilibration'}:
			0: no equilibration
			1: equilibration
		scale factors are returned in HASH{'scale'} 
		0: false
		1: true
 U|L:    	returns Cholesky factorization in HASH{U} or HASH{L}
		0: false
		1: true
 A:		returns scaled A if equilibration was done in HASH{A}  
		0: false
		1: true
 B:		returns scaled B if equilibration was done in HASH{B} 
		0: false
		1: true
 Returned values:
		X (SCALAR CONTEXT),
		HASH{'rcondition'}:
	    	 Reciprocal condition of the matrix
		HASH{'ferror'}:
	    	 Forward error bound 
		HASH{'berror'}:
		 Componentwise relative backward error
		HASH{'info'}:
	    	 Info: output from gesvx
 # Assume $a is symmetric positive definite
 my $a = random(10,10);
 my $b = random(5,10);
 my %options = (U=>1,
 		equilibrate => 1,
		);
 my( $X, %result) = msolvex($a, 0, $b,%opt);

mlls

Solve overdetermined or underdetermined real linear systems using QR or LQ factorization.

If M > N in the M-by-N matrix A, returns the residual sum of squares too. Uses gels or cgels from Lapack.

PDL(X) = mlls(PDL(A), PDL(B), SCALAR(trans))
trans : NOTRANSPOSE  = 0 | TRANSPOSE/CONJUGATE = 1, default = 0
$a = random(4,5);
$b = random(3,5);
($x, $res) = mlls($a, $b);

mllsy

Compute the minimum-norm solution to a real linear least squares problem using a complete orthogonal factorization.

Uses gelsy or cgelsy from Lapack.

 ( PDL(X), ( HASH(result) ) ) = mllsy(PDL(A), PDL(B))
 Returned values:
		X (SCALAR CONTEXT),
		HASH{'A'}:
	    	 complete orthogonal factorization of A
		HASH{'jpvt'}:
	    	 details of columns interchanges 
		HASH{'rank'}:
	    	 effective rank of A
my $a = random(10,10);
my $b = random(10,10);
$X = mllsy($a, $b);

mllss

Compute the minimum-norm solution to a real linear least squares problem using a singular value decomposition.

Uses gelss or gelsd from Lapack.

 ( PDL(X), ( HASH(result) ) )= mllss(PDL(A), PDL(B), SCALAR(method))
 method: specifie which method to use (see Lapack for further details)
 	'(c)gelss' or '(c)gelsd', default = '(c)gelsd'
 Returned values:
		X (SCALAR CONTEXT),
		HASH{'V'}:
	    	 if method = (c)gelss, the right singular vectors, stored columnwise
		HASH{'s'}:
	    	 singular values from SVD 
		HASH{'res'}:
		 if A has full rank the residual sum-of-squares for the solution 
		HASH{'rank'}:
	    	 effective rank of A
		HASH{'info'}:
	    	 info output from method
my $a = random(10,10);
my $b = random(10,10);
$X = mllss($a, $b);

mglm

Solve a general Gauss-Markov Linear Model (GLM) problem. Supports threading. Uses ggglm or cggglm from Lapack.

(PDL(x), PDL(y)) = mglm(PDL(a), PDL(b), PDL(d))
where d is the left hand side of the GLM equation
my $a = random(8,10);
my $b = random(7,10);
my $d = random(10);
my ($x, $y) = mglm($a, $b, $d);

mlse

Solve a linear equality-constrained least squares (LSE) problem. Uses gglse or cgglse from Lapack.

 (PDL(x), PDL(res2)) = mlse(PDL(a), PDL(b), PDL(c), PDL(d))
 where 
 c 	: The right hand side vector for the
 	  least squares part of the LSE problem.
 d	: The right hand side vector for the
	  constrained equation.
 x	: The solution of the LSE problem.
 res2	: The residual sum of squares for the solution
	  (returned only in array context)
my $a = random(5,4);
my $b = random(5,3);
my $c = random(4);
my $d = random(3);
my ($x, $res2) = mlse($a, $b, $c, $d);

meigen

Compute eigenvalues and, optionally, the left and/or right eigenvectors of a general square matrix (spectral decomposition). Eigenvectors are normalized (Euclidean norm = 1) and largest component real. The eigenvalues and eigenvectors returned are object of type PDL::Complex. If only eigenvalues are requested, info is returned in array context. Supports threading. Uses geev or cgeev from Lapack.

(PDL(values), (PDL(LV),  (PDL(RV)), (PDL(info))) = meigen(PDL, SCALAR(left vector), SCALAR(right vector))
left vector  : FALSE = 0 | TRUE = 1, default = 0
right vector : FALSE = 0 | TRUE = 1, default = 0
my $a = random(10,10);
my ( $eigenvalues, $left_eigenvectors, $right_eigenvectors )  = meigen($a,1,1);

meigenx

Compute eigenvalues, one-norm and, optionally, the left and/or right eigenvectors of a general square matrix (spectral decomposition). Eigenvectors are normalized (Euclidean norm = 1) and largest component real. The eigenvalues and eigenvectors returned are object of type PDL::Complex. Uses geevx or cgeevx from Lapack.

 (PDL(value), (PDL(lv),  (PDL(rv)), HASH(result)), HASH(result)) = meigenx(PDL, HASH(options))
 where options are:
 vector:    eigenvectors to compute
		'left':  computes left eigenvectors
		'right': computes right eigenvectors
		'all':   computes left and right eigenvectors
		 0:     doesn't compute (default)
 rcondition: reciprocal condition numbers to compute (returned in HASH{'rconde'} and HASH{'rcondv'})
		'value':  computes reciprocal condition numbers for eigenvalues
		'vector': computes reciprocal condition numbers for eigenvectors
		'all':    computes reciprocal condition numbers for eigenvalues and eigenvectors
		 0:      doesn't compute (default)
 error:      specifie whether or not it computes the error bounds (returned in HASH{'eerror'} and HASH{'verror'})
	     error bound = EPS * One-norm / rcond(e|v)
	     (reciprocal condition numbers for eigenvalues or eigenvectors must be computed).
 		1: returns error bounds
 		0: not computed
 scale:      specifie whether or not it diagonaly scales the entry matrix
	     (scale details returned in HASH : 'scale')
 		1: scales
 		0: Doesn't scale (default)
 permute:    specifie whether or not it permutes row and columns
	     (permute details returned in HASH{'balance'})
 		1: permutes
 		0: Doesn't permute (default)
 schur:       specifie whether or not it returns the Schur form (returned in HASH{'schur'})
		1: returns Schur form
		0: not returned
 Returned values:
	    eigenvalues (SCALAR CONTEXT),
	    left eigenvectors if required,
	    right eigenvectors if required,
	    HASH{'norm'}:
	    	One-norm of the matrix
	    HASH{'info'}:
	    	Info: if > 0, the QR algorithm failed to compute all the eigenvalues
	    	(see syevx for further details)
my $a = random(10,10);
my %options = ( rcondition => 'all',
            vector => 'all',
            error => 1,
            scale => 1,
            permute=>1,
            shur => 1
            );
my ( $eigenvalues, $left_eigenvectors, $right_eigenvectors, %result)  = meigenx($a,%options);
print "Error bounds for eigenvalues:\n $eigenvalues\n are:\n". transpose($result{'eerror'}) unless $info;

mgeigen

Compute generalized eigenvalues and, optionally, the left and/or right generalized eigenvectors for a pair of N-by-N real nonsymmetric matrices (A,B) . The alpha from ratio alpha/beta are object of type PDL::Complex. Supports threading. Uses ggev or cggev from Lapack.

( PDL(alpha), PDL(beta), ( PDL(LV),  (PDL(RV) ), PDL(info)) = mgeigen(PDL(A),PDL(B) SCALAR(left vector), SCALAR(right vector))
left vector  : FALSE = 0 | TRUE = 1, default = 0
right vector : FALSE = 0 | TRUE = 1, default = 0
my $a = random(10,10);
my $b = random(10,10);
my ( $alpha, $beta, $left_eigenvectors, $right_eigenvectors )  = mgeigen($a, $b,1, 1);

mgeigenx

Compute generalized eigenvalues, one-norms and, optionally, the left and/or right generalized eigenvectors for a pair of N-by-N real nonsymmetric matrices (A,B). The alpha from ratio alpha/beta are object of type PDL::Complex. Uses ggevx or cggevx from Lapack.

 (PDL(alpha), PDL(beta), PDL(lv),  PDL(rv), HASH(result) ) = mgeigenx(PDL(a), PDL(b), HASH(options))
 where options are:
 vector:    eigenvectors to compute
		'left':  computes left eigenvectors
		'right': computes right eigenvectors
		'all':   computes left and right eigenvectors
		 0:     doesn't compute (default)
 rcondition: reciprocal condition numbers to compute (returned in HASH{'rconde'} and HASH{'rcondv'})
		'value':  computes reciprocal condition numbers for eigenvalues
		'vector': computes reciprocal condition numbers for eigenvectors
		'all':    computes reciprocal condition numbers for eigenvalues and eigenvectors
		 0:      doesn't compute (default)
 error:      specifie whether or not it computes the error bounds (returned in HASH{'eerror'} and HASH{'verror'})
	     error bound = EPS * sqrt(one-norm(a)**2 + one-norm(b)**2) / rcond(e|v)
	     (reciprocal condition numbers for eigenvalues or eigenvectors must be computed).
 		1: returns error bounds
 		0: not computed
 scale:      specifie whether or not it diagonaly scales the entry matrix
	     (scale details returned in HASH : 'lscale' and 'rscale')
 		1: scales
 		0: doesn't scale (default)
 permute:    specifie whether or not it permutes row and columns
	     (permute details returned in HASH{'balance'})
 		1: permutes
 		0: Doesn't permute (default)
 schur:      specifie whether or not it returns the Schur forms (returned in HASH{'aschur'} and HASH{'bschur'})
	     (right or left eigenvectors must be computed).
		1: returns Schur forms
		0: not returned
 Returned values:
	    alpha,
	    beta,
	    left eigenvectors if required,
	    right eigenvectors if required,
	    HASH{'anorm'}, HASH{'bnorm'}:
	    	One-norm of the matrix A and B
	    HASH{'info'}:
	    	Info: if > 0, the QR algorithm failed to compute all the eigenvalues
	    	(see syevx for further details)
$a = random(10,10);
$b = random(10,10);
%options = (rcondition => 'all',
            vector => 'all',
            error => 1,
            scale => 1,
            permute=>1,
            shur => 1
            );
( $alpha, $beta, $left_eigenvectors, $right_eigenvectors, %result)  = mgeigenx($a, $b,%options);
print "Error bounds for eigenvalues:\n $eigenvalues\n are:\n". transpose($result{'eerror'}) unless $info;

msymeigen

Compute eigenvalues and, optionally eigenvectors of a real symmetric square or complex Hermitian matrix (spectral decomposition). The eigenvalues are computed from lower or upper triangular matrix. If only eigenvalues are requested, info is returned in array context. Supports threading and work inplace if eigenvectors are requested. From Lapack, uses syev or syevd for real and cheev or cheevd for complex.

(PDL(values), (PDL(VECTORS)), PDL(info)) = msymeigen(PDL, SCALAR(uplo), SCALAR(vector), SCALAR(method))
uplo : UPPER  = 0 | LOWER = 1, default = 0
vector : FALSE = 0 | TRUE = 1, default = 0
method : 'syev' | 'syevd' | 'cheev' | 'cheevd', default = 'syevd'|'cheevd'
# Assume $a is symmetric
my $a = random(10,10);
my ( $eigenvalues, $eigenvectors )  = msymeigen($a,0,1, 'syev');

msymeigenx

Compute eigenvalues and, optionally eigenvectors of a symmetric square matrix (spectral decomposition). The eigenvalues are computed from lower or upper triangular matrix and can be selected by specifying a range. From Lapack, uses syevx or syevr for real and cheevx or cheevr for complex.

 (PDL(value), (PDL(vector)), PDL(n), PDL(info), (PDL(support)) ) = msymeigenx(PDL, SCALAR(uplo), SCALAR(vector), HASH(options))
 uplo : UPPER  = 0 | LOWER = 1, default = 0
 vector : FALSE = 0 | TRUE = 1, default = 0
 where options are:
 range_type:    method for selecting eigenvalues
		indice:  range of indices
		interval: range of values
		0: find all eigenvalues and optionally all vectors
 range: 	PDL(2), lower and upper bounds interval or smallest and largest indices
 		1<=range<=N for indice
 abstol:        specifie error tolerance for eigenvalues
 method:        specifie which method to use (see Lapack for further details)
 		'syevx' (default)
 		'syevr'
 		'cheevx' (default)
 		'cheevr'
 Returned values:
 		eigenvalues (SCALAR CONTEXT),
 		eigenvectors if required,
 		total number of eigenvalues found (n),
 		info
		issupz or ifail (support) according to method used and returned info,
 		for (sy|che)evx returns support only if info != 0
 		
 # Assume $a is symmetric
 my $a = random(10,10);
 my $overflow = lamch(9);
 my $range = cat pdl(0),$overflow;
 my $abstol = pdl(1.e-5);
 my %options = (range_type=>'interval',
 		range => $range,
 		abstol => $abstol,
		method=>'syevd');
 my ( $eigenvalues, $eigenvectors, $n, $isuppz )  = msymeigenx($a,0,1, %options);

msymgeigen

Compute eigenvalues and, optionally eigenvectors of a real generalized symmetric-definite or Hermitian-definite eigenproblem. The eigenvalues are computed from lower or upper triangular matrix If only eigenvalues are requested, info is returned in array context. Supports threading. From Lapack, uses sygv or sygvd for real or chegv or chegvd for complex.

 (PDL(values), (PDL(vectors)), PDL(info)) = msymgeigen(PDL(a), PDL(b),SCALAR(uplo), SCALAR(vector), SCALAR(type), SCALAR(method))
 uplo : UPPER  = 0 | LOWER = 1, default = 0
 vector : FALSE = 0 | TRUE = 1, default = 0
 type : 
	1: A * x = (lambda) * B * x
	2: A * B * x = (lambda) * x
	3: B * A * x = (lambda) * x
	default = 1
 method : 'sygv' | 'sygvd' for real or  ,'chegv' | 'chegvd' for complex,  default = 'sygvd' | 'chegvd'
# Assume $a is symmetric
my $a = random(10,10);
my $b = random(10,10);
$b = $b->crossprod($b);
my ( $eigenvalues, $eigenvectors )  = msymgeigen($a, $b, 0, 1, 1, 'sygv');

msymgeigenx

Compute eigenvalues and, optionally eigenvectors of a real generalized symmetric-definite or Hermitian eigenproblem. The eigenvalues are computed from lower or upper triangular matrix and can be selected by specifying a range. Uses sygvx or cheevx from Lapack.

 (PDL(value), (PDL(vector)), PDL(info), PDL(n), (PDL(support)) ) = msymeigenx(PDL(a), PDL(b), SCALAR(uplo), SCALAR(vector), HASH(options))
 uplo : UPPER  = 0 | LOWER = 1, default = 0
 vector : FALSE = 0 | TRUE = 1, default = 0
 where options are:
 type :         Specifies the problem type to be solved
 		1: A * x = (lambda) * B * x
		2: A * B * x = (lambda) * x
		3: B * A * x = (lambda) * x
		default = 1
 range_type:    method for selecting eigenvalues
		indice:  range of indices
		interval: range of values
		0: find all eigenvalues and optionally all vectors
 range: 	PDL(2), lower and upper bounds interval or smallest and largest indices
 		1<=range<=N for indice
 abstol:        specifie error tolerance for eigenvalues
 Returned values:
 		eigenvalues (SCALAR CONTEXT),
 		eigenvectors if required,
 		total number of eigenvalues found (n),
 		info
		ifail according to returned info (support).
# Assume $a is symmetric
my $a = random(10,10);
my $b = random(10,10);
$b = $b->crossprod($b);
my $overflow = lamch(9);
my $range = cat pdl(0),$overflow;
my $abstol = pdl(1.e-5);
my %options = (range_type=>'interval',
		range => $range,
		abstol => $abstol,
		type => 1);
my ( $eigenvalues, $eigenvectors, $n, $isuppz )  = msymgeigenx($a, $b, 0,1, %options);

mdsvd

Compute SVD using Coppen's divide and conquer algorithm. Return singular values in scalar context else left (U), singular values, right (V' (hermitian for complex)) singular vectors and info. Supports threading. If only singulars values are requested, info is only returned in array context. Uses gesdd or cgesdd from Lapack.

 (PDL(U), (PDL(s), PDL(V)), PDL(info)) = mdsvd(PDL, SCALAR(job))
 job :  0 = computes only singular values
 	1 = computes full SVD (square U and V)
	2 = computes SVD (singular values, right and left singular vectors) 
	default = 1
my $a = random(5,10);
my ($u, $s, $v) = mdsvd($a);

msvd

Compute SVD. Can compute singular value either U or V or neither. Return singulars values in scalar context else left (U), singular values, right (V' (hermitian for complex) singulars vector and info. Supports threading. If only singulars values are requested, info is returned in array context. Uses gesvd or cgesvd from Lapack.

 ( (PDL(U)), PDL(s), (PDL(V), PDL(info)) = msvd(PDL, SCALAR(jobu), SCALAR(jobv))
 jobu : 0 = Doesn't compute U
 	1 = computes full SVD (square U)
	2 = computes right singular vectors
	default = 1
 jobv : 0 = Doesn't compute V
 	1 = computes full SVD (square V)
	2 = computes left singular vectors
	default = 1
my $a = random(10,10);
my ($u, $s, $v) = msvd($a);

mgsvd

Compute Generalized (or quotient) singular value decomposition. If the effective rank of (A',B')' is 0 return only unitary V, U, Q. For complex number, needs object of type PDL::Complex. Uses ggsvd or cggsvd from Lapack.

 (PDL(sa), PDL(sb), %ret) = mgsvd(PDL(a), PDL(b), %HASH(options))
 where options are:
 V:    whether or not computes V (boolean, returned in HASH{'V'})
 U:    whether or not computes U (boolean, returned in HASH{'U'})
 Q:    whether or not computes Q (boolean, returned in HASH{'Q'})
 D1:   whether or not computes D1 (boolean, returned in HASH{'D1'})
 D2:   whether or not computes D2 (boolean, returned in HASH{'D2'})
 0R:   whether or not computes 0R (boolean, returned in HASH{'0R'})
 R:    whether or not computes R (boolean, returned in HASH{'R'})
 X:    whether or not computes X (boolean, returned in HASH{'X'})
 all:  whether or not computes all the above.
 Returned value:
 	 sa,sb		: singular value pairs of A and B (generalized singular values = sa/sb)
	 $ret{'rank'}   : effective numerical rank of (A',B')'
	 $ret{'info'}   : info from (c)ggsvd
my $a = random(5,5);
my $b = random(5,7);
my ($c, $s, %ret) = mgsvd($a, $b, X => 1);

TODO

Others things

rectangular diag
usage
is_inplace and function which modify entry matrix
avoid xchg
threading support
automatically create PDL
inplace operation and memory
check s after he/she/it and matrix(s)
PDL type, verify float/double
eig_det qr_det
(g)schur(x): 
	if conjugate pair
		non generalized pb: $seldim ?? (cf: generalized)
		return conjugate pair if only selected?
port to PDL::Matrix

AUTHOR

Copyright (C) Grégory Vanuxem 2005.

This library is free software; you can redistribute it and/or modify it under the terms of the artistic license as specified in the Artistic file.

1 POD Error

The following errors were encountered while parsing the POD:

Around line 7097:

Non-ASCII character seen before =encoding in 'Grégory'. Assuming CP1252