NAME
Paws::SageMaker::InputConfig
USAGE
This class represents one of two things:
Arguments in a call to a service
Use the attributes of this class as arguments to methods. You shouldn't make instances of this class. Each attribute should be used as a named argument in the calls that expect this type of object.
As an example, if Att1 is expected to be a Paws::SageMaker::InputConfig object:
$service_obj->Method(Att1 => { DataInputConfig => $value, ..., S3Uri => $value });
Results returned from an API call
Use accessors for each attribute. If Att1 is expected to be an Paws::SageMaker::InputConfig object:
$result = $service_obj->Method(...);
$result->Att1->DataInputConfig
DESCRIPTION
Contains information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
ATTRIBUTES
REQUIRED DataInputConfig => Str
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.
TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.Examples for one input:
If using the console,
{"input":[1,1024,1024,3]}
If using the CLI,
{\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console,
{"data1": [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI,
{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format,DataInputConfig
should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.Examples for one input:
If using the console,
{"input_1":[1,3,224,224]}
If using the CLI,
{\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console,
{"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI,
{\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.Examples for one input:
If using the console,
{"data":[1,3,1024,1024]}
If using the CLI,
{\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console,
{"var1": [1,1,28,28], "var2":[1,1,28,28]}
If using the CLI,
{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.Examples for one input in dictionary format:
If using the console,
{"input0":[1,3,224,224]}
If using the CLI,
{\"input0\":[1,3,224,224]}
Example for one input in list format:
[[1,3,224,224]]
Examples for two inputs in dictionary format:
If using the console,
{"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI,
{\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
Example for two inputs in list format:
[[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not needed.
DataInputConfig
supports the following parameters for CoreML
OutputConfig$TargetDevice (ML Model format):
shape
: Input shape, for example{"input_1": {"shape": [1,224,224,3]}}
. In addition to static input shapes, CoreML converter supports Flexible input shapes:Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example:
{"input_1": {"shape": ["1..10", 224, 224, 3]}}
Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example:
{"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
default_shape
: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example{"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
type
: Input type. Allowed values:Image
andTensor
. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such asbias
andscale
.bias
: If the input type is an Image, you need to provide the bias vector.scale
: If the input type is an Image, you need to provide a scale factor.
CoreML ClassifierConfig
parameters can be specified using OutputConfig$CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:
Tensor type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
Tensor type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
Image type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Image type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Depending on the model format, DataInputConfig
requires the following parameters for ml_eia2
OutputConfig:TargetDevice (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice).
For TensorFlow models saved in the SavedModel format, specify the input names from
signature_def_key
and the input model shapes forDataInputConfig
. Specify thesignature_def_key
inOutputConfig:CompilerOptions
(https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions) if the model does not use TensorFlow's default signature def key. For example:"DataInputConfig": {"inputs": [1, 224, 224, 3]}
"CompilerOptions": {"signature_def_key": "serving_custom"}
For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in
DataInputConfig
and the output tensor names foroutput_names
inOutputConfig:CompilerOptions
(https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions). For example:"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
"CompilerOptions": {"output_names": ["output_tensor:0"]}
REQUIRED Framework => Str
Identifies the framework in which the model was trained. For example: TENSORFLOW.
FrameworkVersion => Str
Specifies the framework version to use.
This API field is only supported for PyTorch framework versions 1.4
, 1.5
, and 1.6
for cloud instance target devices: ml_c4
, ml_c5
, ml_m4
, ml_m5
, ml_p2
, ml_p3
, and ml_g4dn
.
REQUIRED S3Uri => Str
The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
SEE ALSO
This class forms part of Paws, describing an object used in Paws::SageMaker
BUGS and CONTRIBUTIONS
The source code is located here: https://github.com/pplu/aws-sdk-perl
Please report bugs to: https://github.com/pplu/aws-sdk-perl/issues