ROADMAP
References
* Description of PARI primality algorithms: http://www.math.u-bordeaux.fr/~belabas/pari/doc/faq.html
To be Done
* More user documentation, explain the general idea of the algorithm used
Hairy Details
* Math::GMPz implements all the hairy details of GMP
Other Possibilities
Already Done
* Port iBPSW from spec/bpsw/bpsw1.c
is_prime($N) <==> iBPSW(N,1)
This is basically trial division, followed by a is_strong_pseudoprime(),
followed by a is_strong_lucas_pseudoprime()
There are many optimizations to made for small arguments
Main function: is_prime(), to replace Math::PARI::is_prime()
It may take optional arguments for power-users, but we want to have a really
simple function for people to call like this:
is_prime($x) ? foo() : bar();
which "does what I mean."
** next_prime()
This function is merely a wrapper around is_prime(), which takes a starting
number and increments it until is_prime() returns true and then returns that
number.
This should only require a small number of tests, most of the work is in making the necessary components of is_prime().
* Port iMillerRabin from spec/bpsw/trn.c , this will be is_strong_pseudoprime()
* implement base b pseudoprime test, a.k.a n is in psp(b) this is is_pseudoprime()
* Port iStrongLucasSelfridge(mpz_t) from spec/bpsw/trn.c , this will be is_strong_lucas_pseudoprime()
References
* Description of PARI primality algorithms: http://www.math.u-bordeaux.fr/~belabas/pari/doc/faq.html