NAME
Algorithm::Evolutionary::Fitness::ECC - Error Correcting codes problem generator
SYNOPSIS
my $number_of_codewords = 10;
my $min_distance = 1;
my $p_peaks = Algorithm::Evolutionary::Fitness::ECC->new( $number_of_codewords, $min_distance );
DESCRIPTION
Extracted from article "Effects of scale-free and small-world topologies on binary coded self-adaptive CEA", by Giacobini et al [Ga]. Quoting: " The ECC problem was presented in [MW]. We will consider a three-tuple (n, M, d), where n is the length of each codeword (number of bits), M is the number of codewords, and d is the minimum Hamming distance between any pair of codewords. Our objective will be to find a code which has a value for d as large as possible (reflecting greater tolerance to noise and errors), given previously fixed values for n and M . The problem we have studied is a simplified version of that in [MW]. In our case we search half of the codewords (M/2) that will compose the code, and the other half is made up by the complement of the codewords computed by the algorithm"
[Ga] Mario Giacobini, Mike Preuss, Marco Tomassini: Effects of Scale-Free and Small-World Topologies on Binary Coded Self-adaptive CEA. EvoCOP 2006: 86-98.
[MW] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North- Holland, Amsterdam, 1977.
METHODS
new
Creates a new instance of the problem, with the said number of bits and peaks
_really_apply
Applies the instantiated problem to a chromosome
ecc
Applies the instantiated problem to a string
Copyright
This file is released under the GPL. See the LICENSE file included in this distribution,
or go to http://www.fsf.org/licenses/gpl.txt
CVS Info: $Date: 2009/07/24 10:25:49 $
$Header: /cvsroot/opeal/Algorithm-Evolutionary/lib/Algorithm/Evolutionary/Fitness/ECC.pm,v 3.2 2009/07/24 10:25:49 jmerelo Exp $
$Author: jmerelo $
$Revision: 3.2 $
$Name $