NAME
PDL::LinearAlgebra::Complex - PDL interface to the lapack linear algebra programming library (complex number)
SYNOPSIS
use PDL;
use PDL::LinearAlgebra::Complex;
$a = random(cdouble, 100, 100);
$s = zeroes(cdouble, 100);
$u = zeroes(cdouble, 100, 100);
$v = zeroes(cdouble, 100, 100);
$info = 0;
$job = 0;
cgesdd($a, $job, $info, $s , $u, $v);
DESCRIPTION
This module provides an interface to parts of the lapack library (complex numbers). These routines accept either float or double ndarrays.
cgtsv
Signature: (complex [phys]DL(n);complex [phys]D(n);complex [phys]DU(n);complex [io,phys]B(n,nrhs); int [o,phys]info())
Solves the equation
A * X = B
where A is an n
by n
tridiagonal matrix, by Gaussian elimination with partial pivoting, and B is an n
by nrhs
matrix.
Note that the equation A**T*X = B
may be solved by interchanging the order of the arguments DU and DL.
NB This differs from the LINPACK function cgtsl
in that DL
starts from its first element, while the LINPACK equivalent starts from its second element.
Arguments
=========
DL: On entry, DL must contain the (n-1) sub-diagonal elements of A.
On exit, DL is overwritten by the (n-2) elements of the
second super-diagonal of the upper triangular matrix U from
the LU factorization of A, in DL(1), ..., DL(n-2).
D: On entry, D must contain the diagonal elements of A.
On exit, D is overwritten by the n diagonal elements of U.
DU: On entry, DU must contain the (n-1) super-diagonal elements of A.
On exit, DU is overwritten by the (n-1) elements of the
first super-diagonal of the U.
B: On entry, the n by nrhs matrix of right hand side matrix B.
On exit, if info = 0, the n by nrhs solution matrix X.
info: = 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value
> 0: if info = i, U(i,i) is exactly zero, and the solution
has not been computed. The factorization has not been
completed unless i = n.
$dl = random(float, 9) + random(float, 9) * i;
$d = random(float, 10) + random(float, 10) * i;
$du = random(float, 9) + random(float, 9) * i;
$b = random(10,5) + random(10,5) * i;
cgtsv($dl, $d, $du, $b, ($info=null));
print "X is:\n$b" unless $info;
cgesvd
Signature: (complex [io]A(m,n); int jobu(); int jobvt(); [o]s(minmn=CALC(PDLMIN($SIZE(m),$SIZE(n))));complex [o]U(p,p);complex [o]VT(s,s); int [o]info(); [t]rwork(rworkn=CALC(5*$SIZE(minmn))))
Complex version of "gesvd" in PDL::LinearAlgebra::Real.
The SVD is written
A = U * SIGMA * ConjugateTranspose(V)
cgesdd
Signature: (complex [io]A(m,n); int jobz(); [o]s(minmn=CALC(PDLMIN($SIZE(m),$SIZE(n))));complex [o]U(p,p);complex [o]VT(s,s); int [o]info(); int [t]iwork(iworkn))
Complex version of "gesdd" in PDL::LinearAlgebra::Real.
The SVD is written
A = U * SIGMA * ConjugateTranspose(V)
cggsvd
Signature: (complex [io]A(m,n); int jobu(); int jobv(); int jobq();complex [io]B(p,n); int [o]k(); int [o]l();[o]alpha(n);[o]beta(n);complex [o]U(q,q);complex [o]V(r,r);complex [o]Q(s,s); int [o]iwork(n); int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))))
Complex version of "ggsvd" in PDL::LinearAlgebra::Real
cgeev
Signature: (complex A(n,n); int jobvl(); int jobvr();complex [o]w(n);complex [o]vl(m,m);complex [o]vr(p,p); int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))))
Complex version of "geev" in PDL::LinearAlgebra::Real
cgeevx
Signature: (complex [io]A(n,n); int jobvl(); int jobvr(); int balance(); int sense();complex [o]w(n);complex [o]vl(m,m);complex [o]vr(p,p); int [o]ilo(); int [o]ihi(); [o]scale(n); [o]abnrm(); [o]rconde(q); [o]rcondv(r); int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))))
Complex version of "geevx" in PDL::LinearAlgebra::Real
cggev
Signature: (complex A(n,n); int [phys]jobvl();int [phys]jobvr();complex B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VL(m,m);complex [o]VR(p,p);int [o]info(); [t]rwork(rworkn=CALC(8*$SIZE(n))))
Complex version of "ggev" in PDL::LinearAlgebra::Real
cggevx
Signature: (complex [io,phys]A(n,n);int balanc();int jobvl();int jobvr();int sense();complex [io,phys]B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VL(m,m);complex [o]VR(p,p);int [o]ilo();int [o]ihi();[o]lscale(n);[o]rscale(n);[o]abnrm();[o]bbnrm();[o]rconde(r);[o]rcondv(s);int [o]info(); [t]rwork(rworkn=CALC(6*$SIZE(n))); int [t]bwork(bworkn); int [t]iwork(iworkn))
Complex version of "ggevx" in PDL::LinearAlgebra::Real
cgees
Signature: (complex [io]A(n,n); int jobvs(); int sort();complex [o]w(n);complex [o]vs(p,p); int [o]sdim(); int [o]info(); [t]rwork(n); int [t]bwork(bworkn);SV* select_func)
Complex version of "gees" in PDL::LinearAlgebra::Real
select_func:
If sort = 1, select_func is used to select eigenvalues to sort
to the top left of the Schur form.
If sort = 0, select_func is not referenced.
An complex eigenvalue w is selected if
select_func(PDL::Complex(w)) is true;
Note that a selected complex eigenvalue may no longer
satisfy select_func(PDL::Complex(w)) = 1 after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
case info is set to N+2.
cgeesx
Signature: (complex [io]A(n,n); int jobvs(); int sort(); int sense();complex [o]w(n);complex [o]vs(p,p); int [o]sdim(); [o]rconde();[o]rcondv(); int [o]info(); [t]rwork(n); int [t]bwork(bworkn);SV* select_func)
Complex version of "geesx" in PDL::LinearAlgebra::Real
select_func:
If sort = 1, select_func is used to select eigenvalues to sort
to the top left of the Schur form.
If sort = 0, select_func is not referenced.
An complex eigenvalue w is selected if
select_func(PDL::Complex(w)) is true;
Note that a selected complex eigenvalue may no longer
satisfy select_func(PDL::Complex(w)) = 1 after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
case info is set to N+2.
cgges
Signature: (complex [io]A(n,n); int jobvsl();int jobvsr();int sort();complex [io]B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VSL(m,m);complex [o]VSR(p,p);int [o]sdim();int [o]info(); [t]rwork(rworkn=CALC(8*$SIZE(n))); int [t]bwork(bworkn);SV* select_func)
Complex version of "ggees" in PDL::LinearAlgebra::Real
select_func:
If sort = 1, select_func is used to select eigenvalues to sort
to the top left of the Schur form.
If sort = 0, select_func is not referenced.
An eigenvalue w = w/beta is selected if
select_func(PDL::Complex(w), PDL::Complex(beta)) is true;
Note that a selected complex eigenvalue may no longer
satisfy select_func(PDL::Complex(w),PDL::Complex(beta)) = 1 after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
case info is set to N+2.
cggesx
Signature: (complex [io]A(n,n); int jobvsl();int jobvsr();int sort();int sense();complex [io]B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VSL(m,m);complex [o]VSR(p,p);int [o]sdim();[o]rconde(q=2);[o]rcondv(q=2);int [o]info(); [t]rwork(rworkn=CALC(8*$SIZE(n))); int [t]bwork(bworkn); int [t]iwork(iworkn=CALC($SIZE(n)+2));SV* select_func)
Complex version of "ggeesx" in PDL::LinearAlgebra::Real
select_func:
If sort = 1, select_func is used to select eigenvalues to sort
to the top left of the Schur form.
If sort = 0, select_func is not referenced.
An eigenvalue w = w/beta is selected if
select_func(PDL::Complex(w), PDL::Complex(beta)) is true;
Note that a selected complex eigenvalue may no longer
satisfy select_func(PDL::Complex(w),PDL::Complex(beta)) = 1 after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
case info is set to N+3.
cheev
Signature: (complex [io]A(n,n); int jobz(); int uplo(); [o]w(n); int [o]info(); [t]rwork(rworkn=CALC(3*($SIZE(n)-2))))
Complex version of "syev" in PDL::LinearAlgebra::Real for Hermitian matrix
cheevd
Signature: (complex [io,phys]A(n,n); int jobz(); int uplo(); [o,phys]w(n); int [o,phys]info())
Complex version of "syevd" in PDL::LinearAlgebra::Real for Hermitian matrix
cheevx
Signature: (complex A(n,n); int jobz(); int range(); int uplo(); vl(); vu(); int il(); int iu(); abstol(); int [o]m(); [o]w(n);complex [o]z(p,p);int [o]ifail(n); int [o]info(); [t]rwork(rworkn=CALC(7*$SIZE(n))); int [t]iwork(iworkn=CALC(5*$SIZE(n))))
Complex version of "syevx" in PDL::LinearAlgebra::Real for Hermitian matrix
cheevr
Signature: (complex [phys]A(n,n); int jobz(); int range(); int uplo(); [phys]vl(); [phys]vu(); int [phys]il(); int [phys]iu(); [phys]abstol(); int [o,phys]m(); [o,phys]w(n);complex [o,phys]z(p,q);int [o,phys]isuppz(r); int [o,phys]info())
Complex version of "syevr" in PDL::LinearAlgebra::Real for Hermitian matrix
chegv
Signature: (complex [io]A(n,n);int itype();int jobz(); int uplo();complex [io]B(n,n);[o]w(n); int [o]info(); [t]rwork(rworkn=CALC(3*($SIZE(n)-2))))
Complex version of "sygv" in PDL::LinearAlgebra::Real for Hermitian matrix
chegvd
Signature: (complex [io,phys]A(n,n);int [phys]itype();int jobz(); int uplo();complex [io,phys]B(n,n);[o,phys]w(n); int [o,phys]info())
Complex version of "sygvd" in PDL::LinearAlgebra::Real for Hermitian matrix
chegvx
Signature: (complex [io]A(n,n);int itype();int jobz();int range();
int uplo();complex [io]B(n,n);vl();vu();int il();
int iu();abstol();int [o]m();[o]w(n);complex
[o]Z(p,p);int [o]ifail(n);int [o]info(); [t]rwork(rworkn=CALC(7*$SIZE(n))); int [t]iwork(iworkn=CALC(5*$SIZE(n)));
)
Complex version of "sygvx" in PDL::LinearAlgebra::Real for Hermitian matrix
cgesv
Signature: (complex [io,phys]A(n,n);complex [io,phys]B(n,m); int [o,phys]ipiv(n); int [o,phys]info())
Complex version of "gesv" in PDL::LinearAlgebra::Real
cgesvx
Signature: (complex [io]A(n,n); int trans(); int fact();complex [io]B(n,m);complex [io]af(n,n); int [io]ipiv(n); int [io]equed(); [o]r(p); [o]c(q);complex [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); [o]rpvgrw(); int [o]info(); [t]rwork(rworkn=CALC(4*$SIZE(n))); [t]work(rworkn))
Complex version of "gesvx" in PDL::LinearAlgebra::Real.
trans: Specifies the form of the system of equations:
= 0: A * X = B (No transpose)
= 1: A' * X = B (Transpose)
= 2: A**H * X = B (Conjugate transpose)
csysv
Signature: (complex [io,phys]A(n,n); int uplo();complex [io,phys]B(n,m); int [o]ipiv(n); int [o]info())
Complex version of "sysv" in PDL::LinearAlgebra::Real
csysvx
Signature: (complex [phys]A(n,n); int uplo(); int fact();complex [phys]B(n,m);complex [io,phys]af(n,n); int [io,phys]ipiv(n);complex [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); int [o]info(); [t]rwork(n))
Complex version of "sysvx" in PDL::LinearAlgebra::Real
chesv
Signature: (complex [io,phys]A(n,n); int uplo();complex [io,phys]B(n,m); int [o,phys]ipiv(n); int [o,phys]info())
Complex version of "sysv" in PDL::LinearAlgebra::Real for Hermitian matrix
chesvx
Signature: (complex A(n,n); int uplo(); int fact();complex B(n,m);complex [io]af(n,n); int [io]ipiv(n);complex [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); int [o]info(); [t]rwork(n))
Complex version of "sysvx" in PDL::LinearAlgebra::Real for Hermitian matrix
cposv
Signature: (complex [io,phys]A(n,n); int uplo();complex [io,phys]B(n,m); int [o,phys]info())
Complex version of "posv" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix
cposvx
Signature: (complex [io]A(n,n); int uplo(); int fact();complex [io]B(n,m);complex [io]af(n,n); int [io]equed(); [o]s(p);complex [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))); [t]work(workn=CALC(4*$SIZE(n))))
Complex version of "posvx" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix
cgels
Signature: (complex [io,phys]A(m,n); int trans();complex [io,phys]B(p,q);int [o,phys]info())
Solves overdetermined or underdetermined complex linear systems involving an M-by-N matrix A, or its conjugate-transpose. Complex version of "gels" in PDL::LinearAlgebra::Real.
trans: = 0: the linear system involves A;
= 1: the linear system involves A**H.
cgelsy
Signature: (complex [io]A(m,n);complex [io]B(p,q); rcond(); int [io]jpvt(n); int [o]rank();int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))))
Complex version of "gelsy" in PDL::LinearAlgebra::Real
cgelss
Signature: (complex [io]A(m,n);complex [io]B(p,q); rcond(); [o]s(r); int [o]rank();int [o]info(); [t]rwork(rworkn=CALC(5*PDLMIN($SIZE(m),$SIZE(n)))))
Complex version of "gelss" in PDL::LinearAlgebra::Real
cgelsd
Signature: (complex [io]A(m,n);complex [io]B(p,q); rcond(); [o]s(minmn=CALC(PDLMAX(1,PDLMIN($SIZE(m),$SIZE(n))))); int [o]rank();int [o]info(); int [t]iwork(iworkn); [t]rwork(rworkn))
Complex version of "gelsd" in PDL::LinearAlgebra::Real
cgglse
Signature: (complex [phys]A(m,n);complex [phys]B(p,n);complex [io,phys]c(m);complex [phys]d(p);complex [o,phys]x(n);int [o,phys]info())
Complex version of "gglse" in PDL::LinearAlgebra::Real
cggglm
Signature: (complex [phys]A(n,m);complex [phys]B(n,p);complex [phys]d(n);complex [o,phys]x(m);complex [o,phys]y(p);int [o,phys]info())
Complex version of "ggglm" in PDL::LinearAlgebra::Real
cgetrf
Signature: (complex [io]A(m,n); int [o]ipiv(p=CALC(PDLMIN($SIZE(m),$SIZE(n)))); int [o]info())
Complex version of "getrf" in PDL::LinearAlgebra::Real
cgetf2
Signature: (complex [io]A(m,n); int [o]ipiv(p=CALC(PDLMIN($SIZE(m),$SIZE(n)))); int [o]info())
Complex version of "getf2" in PDL::LinearAlgebra::Real
csytrf
Signature: (complex [io,phys]A(n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())
Complex version of "sytrf" in PDL::LinearAlgebra::Real
csytf2
Signature: (complex [io,phys]A(n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())
Complex version of "sytf2" in PDL::LinearAlgebra::Real
cchetrf
Signature: (complex [io]A(n,n); int uplo(); int [o]ipiv(n); int [o]info(); [t]work(workn))
Complex version of "sytrf" in PDL::LinearAlgebra::Real for Hermitian matrix
chetf2
Signature: (complex [io]A(n,n); int uplo(); int [o]ipiv(n); int [o]info())
Complex version of "sytf2" in PDL::LinearAlgebra::Real for Hermitian matrix
cpotrf
Signature: (complex [io,phys]A(n,n); int uplo(); int [o,phys]info())
Complex version of "potrf" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix
cpotf2
Signature: (complex [io,phys]A(n,n); int uplo(); int [o,phys]info())
Complex version of "potf2" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix
cgetri
Signature: (complex [io,phys]A(n,n); int [phys]ipiv(n); int [o,phys]info())
Complex version of "getri" in PDL::LinearAlgebra::Real
csytri
Signature: (complex [io]A(n,n); int uplo(); int ipiv(n); int [o]info(); [t]work(workn=CALC(2*$SIZE(n))))
Complex version of "sytri" in PDL::LinearAlgebra::Real
chetri
Signature: (complex [io]A(n,n); int uplo(); int ipiv(n); int [o]info(); [t]work(workn=CALC(2*$SIZE(n))))
Complex version of "sytri" in PDL::LinearAlgebra::Real for Hermitian matrix
cpotri
Signature: (complex [io,phys]A(n,n); int uplo(); int [o,phys]info())
Complex version of "potri" in PDL::LinearAlgebra::Real
ctrtri
Signature: (complex [io,phys]A(n,n); int uplo(); int diag(); int [o,phys]info())
Complex version of "trtri" in PDL::LinearAlgebra::Real
ctrti2
Signature: (complex [io,phys]A(n,n); int uplo(); int diag(); int [o,phys]info())
Complex version of "trti2" in PDL::LinearAlgebra::Real
cgetrs
Signature: (complex [phys]A(n,n); int trans();complex [io,phys]B(n,m); int [phys]ipiv(n); int [o,phys]info())
Complex version of "getrs" in PDL::LinearAlgebra::Real
Arguments
=========
trans: = 0: No transpose;
= 1: Transpose;
= 2: Conjugate transpose;
csytrs
Signature: (complex [phys]A(n,n); int uplo();complex [io,phys]B(n,m); int [phys]ipiv(n); int [o,phys]info())
Complex version of "sytrs" in PDL::LinearAlgebra::Real
chetrs
Signature: (complex [phys]A(n,n); int uplo();complex [io,phys]B(n,m); int [phys]ipiv(n); int [o,phys]info())
Complex version of "sytrs" in PDL::LinearAlgebra::Real for Hermitian matrix
cpotrs
Signature: (complex [phys]A(n,n); int uplo();complex [io,phys]B(n,m); int [o,phys]info())
Complex version of "potrs" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix
ctrtrs
Signature: (complex [phys]A(n,n); int uplo(); int trans(); int diag();complex [io,phys]B(n,m); int [o,phys]info())
Complex version of "trtrs" in PDL::LinearAlgebra::Real
Arguments
=========
trans: = 0: No transpose;
= 1: Transpose;
= 2: Conjugate transpose;
clatrs
Signature: (complex [phys]A(n,n); int uplo(); int trans(); int diag(); int normin();complex [io,phys]x(n); [o,phys]scale();[io,phys]cnorm(n);int [o,phys]info())
Complex version of "latrs" in PDL::LinearAlgebra::Real
Arguments
=========
trans: = 0: No transpose;
= 1: Transpose;
= 2: Conjugate transpose;
cgecon
Signature: (complex A(n,n); int norm(); anorm(); [o]rcond();int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))); [t]work(workn=CALC(4*$SIZE(n))))
Complex version of "gecon" in PDL::LinearAlgebra::Real
csycon
Signature: (complex A(n,n); int uplo(); int ipiv(n); anorm(); [o]rcond();int [o]info(); [t]work(workn=CALC(4*$SIZE(n))))
Complex version of "sycon" in PDL::LinearAlgebra::Real
checon
Signature: (complex A(n,n); int uplo(); int ipiv(n); anorm(); [o]rcond();int [o]info(); [t]work(workn=CALC(4*$SIZE(n))))
Complex version of "sycon" in PDL::LinearAlgebra::Real for Hermitian matrix
cpocon
Signature: (complex A(n,n); int uplo(); anorm(); [o]rcond();int [o]info(); [t]work(workn=CALC(4*$SIZE(n))); [t]rwork(n))
Complex version of "pocon" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix
ctrcon
Signature: (complex A(n,n); int norm();int uplo();int diag(); [o]rcond();int [o]info(); [t]work(workn=CALC(4*$SIZE(n))); [t]rwork(n))
Complex version of "trcon" in PDL::LinearAlgebra::Real
cgeqp3
Signature: (complex [io]A(m,n); int [io]jpvt(n);complex [o]tau(k); int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))))
Complex version of "geqp3" in PDL::LinearAlgebra::Real
cgeqrf
Signature: (complex [io,phys]A(m,n);complex [o,phys]tau(k); int [o,phys]info())
Complex version of "geqrf" in PDL::LinearAlgebra::Real
cungqr
Signature: (complex [io,phys]A(m,n);complex [phys]tau(k); int [o,phys]info())
Complex version of "orgqr" in PDL::LinearAlgebra::Real
cunmqr
Signature: (complex [phys]A(p,k); int side(); int trans();complex [phys]tau(k);complex [io,phys]C(m,n);int [o,phys]info())
Complex version of "ormqr" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.
cgelqf
Signature: (complex [io,phys]A(m,n);complex [o,phys]tau(k); int [o,phys]info())
Complex version of "gelqf" in PDL::LinearAlgebra::Real
cunglq
Signature: (complex [io,phys]A(m,n);complex [phys]tau(k); int [o,phys]info())
Complex version of "orglq" in PDL::LinearAlgebra::Real
cunmlq
Signature: (complex [phys]A(k,p); int side(); int trans();complex [phys]tau(k);complex [io,phys]C(m,n);int [o,phys]info())
Complex version of "ormlq" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.
cgeqlf
Signature: (complex [io,phys]A(m,n);complex [o,phys]tau(k); int [o,phys]info())
Complex version of "geqlf" in PDL::LinearAlgebra::Real
cungql
Signature: (complex [io,phys]A(m,n);complex [phys]tau(k); int [o,phys]info())
cunmql
Signature: (complex [phys]A(p,k); int side(); int trans();complex [phys]tau(k);complex [io,phys]C(m,n);int [o,phys]info())
Complex version of "ormql" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.
cgerqf
Signature: (complex [io,phys]A(m,n);complex [o,phys]tau(k); int [o,phys]info())
Complex version of "gerqf" in PDL::LinearAlgebra::Real
cungrq
Signature: (complex [io,phys]A(m,n);complex [phys]tau(k); int [o,phys]info())
Complex version of "orgrq" in PDL::LinearAlgebra::Real.
cunmrq
Signature: (complex [phys]A(k,p); int side(); int trans();complex [phys]tau(k);complex [io,phys]C(m,n);int [o,phys]info())
Complex version of "ormrq" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.
ctzrzf
Signature: (complex [io,phys]A(m,n);complex [o,phys]tau(k); int [o,phys]info())
Complex version of "tzrzf" in PDL::LinearAlgebra::Real
cunmrz
Signature: (complex [phys]A(k,p); int side(); int trans();complex [phys]tau(k);complex [io,phys]C(m,n);int [o,phys]info())
Complex version of "ormrz" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.
cgehrd
Signature: (complex [io,phys]A(n,n); int [phys]ilo();int [phys]ihi();complex [o,phys]tau(k); int [o,phys]info())
Complex version of "gehrd" in PDL::LinearAlgebra::Real
cunghr
Signature: (complex [io,phys]A(n,n); int [phys]ilo();int [phys]ihi();complex [phys]tau(k); int [o,phys]info())
Complex version of "orghr" in PDL::LinearAlgebra::Real
chseqr
Signature: (complex [io,phys]H(n,n); int job();int compz();int [phys]ilo();int [phys]ihi();complex [o,phys]w(n);complex [o,phys]Z(m,m); int [o,phys]info())
Complex version of "hseqr" in PDL::LinearAlgebra::Real
ctrevc
Signature: (complex [io]T(n,n); int side();int howmny();int select(q);complex [o]VL(m,m);complex [o]VR(p,p);int [o]m(); int [o]info(); [t]work(workn=CALC(5*$SIZE(n))))
Complex version of "trevc" in PDL::LinearAlgebra::Real
ctgevc
Signature: (complex [io]A(n,n); int side();int howmny();complex [io]B(n,n);int select(q);complex [o]VL(m,m);complex [o]VR(p,p);int [o]m(); int [o]info(); [t]work(workn=CALC(6*$SIZE(n))))
Complex version of "tgevc" in PDL::LinearAlgebra::Real
cgebal
Signature: (complex [io,phys]A(n,n); int job(); int [o,phys]ilo();int [o,phys]ihi();[o,phys]scale(n); int [o,phys]info())
Complex version of "gebal" in PDL::LinearAlgebra::Real
clange
Signature: (complex A(n,m); int norm(); [o]b(); [t]work(workn))
Complex version of "lange" in PDL::LinearAlgebra::Real
clansy
Signature: (complex A(n,n); int uplo(); int norm(); [o]b(); [t]work(workn))
Complex version of "lansy" in PDL::LinearAlgebra::Real
clantr
Signature: (complex A(m,n); int uplo(); int norm();int diag(); [o]b(); [t]work(workn))
Complex version of "lantr" in PDL::LinearAlgebra::Real
cgemm
Signature: (complex [phys]A(m,n); int transa(); int transb();complex [phys]B(p,q);complex [phys]alpha();complex [phys]beta();complex [io,phys]C(r,s))
Complex version of "gemm" in PDL::LinearAlgebra::Real.
Arguments
=========
transa: = 0: No transpose;
= 1: Transpose;
= 2: Conjugate transpose;
transb: = 0: No transpose;
= 1: Transpose;
= 2: Conjugate transpose;
cmmult
Signature: (complex [phys]A(m,n);complex [phys]B(p,m);complex [o,phys]C(p,n))
Complex version of "mmult" in PDL::LinearAlgebra::Real
ccrossprod
Signature: (complex [phys]A(n,m);complex [phys]B(p,m);complex [o,phys]C(p,n))
Complex version of "crossprod" in PDL::LinearAlgebra::Real
csyrk
Signature: (complex [phys]A(m,n); int uplo(); int trans();complex [phys]alpha();complex [phys]beta();complex [io,phys]C(p,p))
Complex version of "syrk" in PDL::LinearAlgebra::Real
cdot
Signature: (complex [phys]a(n);complex [phys]b(n);complex [o]c())
Complex version of "dot" in PDL::LinearAlgebra::Real
cdotc
Signature: (complex [phys]a(n);complex [phys]b(n);complex [o,phys]c())
Forms the dot product of two vectors, conjugating the first vector.
caxpy
Signature: (complex [phys]a(n);complex [phys] alpha();complex [io,phys]b(n))
Complex version of "axpy" in PDL::LinearAlgebra::Real
cnrm2
Signature: (complex [phys]a(n);[o]b())
Complex version of "nrm2" in PDL::LinearAlgebra::Real
casum
Signature: (complex [phys]a(n);[o]b())
Complex version of "asum" in PDL::LinearAlgebra::Real
cscal
Signature: (complex [io,phys]a(n);complex scale())
Complex version of "scal" in PDL::LinearAlgebra::Real
csscal
Signature: (complex [io,phys]a(n);scale())
Scales a complex vector by a real constant.
crotg
Signature: (complex [io,phys]a();complex [phys]b();[o,phys]c();complex [o,phys]s())
Complex version of "rotg" in PDL::LinearAlgebra::Real
clacpy
Signature: (complex [phys]A(m,n); int uplo();complex [o,phys]B(p,n))
Complex version of "lacpy" in PDL::LinearAlgebra::Real
claswp
Signature: (complex [io,phys]A(m,n); int [phys]k1(); int [phys]k2(); int [phys]ipiv(p))
Complex version of "laswp" in PDL::LinearAlgebra::Real
ccharpol
Signature: (A(c=2,n,n);[o]Y(c=2,n,n);[o]out(c=2,p=CALC($SIZE(n)+1)); [t]rwork(rworkn=CALC(2*$SIZE(n)*$SIZE(n))))
Complex version of "charpol" in PDL::LinearAlgebra::Real
AUTHOR
Copyright (C) Gr�gory Vanuxem 2005-2018.
This library is free software; you can redistribute it and/or modify it under the terms of the Perl Artistic License as in the file Artistic_2 in this distribution.