NAME
Math::Business::BlackScholesMerton::NonBinaries
SYNOPSIS
use Math::Business::BlackScholesMerton::NonBinaries;
# price of a Call spread option
my $price_call_option = Math::Business::BlackScholesMerton::NonBinaries::vanilla_call(
1.35, # stock price
1.34, # barrier
(7/365), # time
0.002, # payout currency interest rate (0.05 = 5%)
0.001, # quanto drift adjustment (0.05 = 5%)
0.11, # volatility (0.3 = 30%)
);
DESCRIPTION
Contains non-binary option pricing formula.
vanilla_call
USAGE
my $price = vanilla_call($S, $K, $t, $r_q, $mu, $sigma);
DESCRIPTION
Price of a Vanilla Call
vanilla_put
USAGE
my $price = vanilla_put($S, $K, $t, $r_q, $mu, sigma)
DESCRIPTION
Price a standard Vanilla Put
lbfloatcall
USAGE
my $price = lbfloatcall($S, $K, $t, $r_q, $mu, $sigma, $S_max, $S_min)
DESCRIPTION
Price of a Lookback Float Call
lbfloatput
USAGE
my $price = lbfloatcall($S, $K, $t, $r_q, $mu, $sigma, $S_max, $S_min)
DESCRIPTION
Price of a Lookback Float Put
lbfixedcall
USAGE
my $price = lbfixedcall($S, $K, $t, $r_q, $mu, $sigma, $S_max, $S_min)
DESCRIPTION
Price of a Lookback Fixed Call
lbfixedput
USAGE
my $price = lbfixedput($S, $K, $t, $r_q, $mu, $sigma, $S_max, $S_min)
DESCRIPTION
Price of a Lookback Fixed Put
lbhighlow
USAGE
my $price = lbhighlow($S, $K, $t, $r_q, $mu, $sigma, $S_max, $S_min)
DESCRIPTION
Price of a Lookback High Low
_d1_function
returns the d1 term common to many BlackScholesMerton formulae.
_l_max
This is a common function use to calculate the lookbacks options price. See [5] for details.
_l_min
This is a common function use to calculate the lookbacks options price. See [5] for details.
dnorm
Standard normal density function
callspread
USAGE
my $price = callspread($S, $U, $D, $t, $r_q, $mu, $sigmaU, $sigmaD);
DESCRIPTION
Price of a CALL SPREAD
putspread
USAGE
my $price = putspread($S, $U, $D, $t, $r_q, $mu, $sigmaU, $sigmaD);
DESCRIPTION
Price of a PUT SPREAD
standardbarrier
A function implemented by Diethelm Wuertz.
Description of parameters:
$S - starting spot $H - barrier $X - exercise price $K - cash rebate
References: Haug, Chapter 2.10.1
doubleknockout
Description of parameters:
$S - spot $H2 - high barrier $H1 - low barrier $K - payout strike $tiy - time in years $sigma - volatility $mu - mean $r - interest rate $type - 'c' for buy or 'p' for sell
Reference: https://core.ac.uk/download/pdf/19187200.pdf