NAME

OpenAPI::Client::OpenAI::Path::fine_tuning-jobs - Documentation for the /fine_tuning/jobs path.

DESCRIPTION

This document describes the API endpoint at /fine_tuning/jobs.

PATHS

GET /fine_tuning/jobs

List your organization's fine-tuning jobs

Operation ID

listPaginatedFineTuningJobs

$client->listPaginatedFineTuningJobs( ... );

Parameters

  • after (in query) (Optional) - Identifier for the last job from the previous pagination request.

    Type: string

  • limit (in query) (Optional) - Number of fine-tuning jobs to retrieve.

    Type: integer

    Default: 20

  • metadata (in query) (Optional) - Optional metadata filter. To filter, use the syntax `metadata[k]=v`. Alternatively, set `metadata=null` to indicate no metadata.

    Type: object

Responses

Status Code: 200

OK

Content Types:

  • application/json

    Example (See the OpenAI spec for more detail):

    {
       "data" : [
          "{\n  \"object\": \"fine_tuning.job\",\n  \"id\": \"ftjob-abc123\",\n  \"model\": \"davinci-002\",\n  \"created_at\": 1692661014,\n  \"finished_at\": 1692661190,\n  \"fine_tuned_model\": \"ft:davinci-002:my-org:custom_suffix:7q8mpxmy\",\n  \"organization_id\": \"org-123\",\n  \"result_files\": [\n      \"file-abc123\"\n  ],\n  \"status\": \"succeeded\",\n  \"validation_file\": null,\n  \"training_file\": \"file-abc123\",\n  \"hyperparameters\": {\n      \"n_epochs\": 4,\n      \"batch_size\": 1,\n      \"learning_rate_multiplier\": 1.0\n  },\n  \"trained_tokens\": 5768,\n  \"integrations\": [],\n  \"seed\": 0,\n  \"estimated_finish\": 0,\n  \"method\": {\n    \"type\": \"supervised\",\n    \"supervised\": {\n      \"hyperparameters\": {\n        \"n_epochs\": 4,\n        \"batch_size\": 1,\n        \"learning_rate_multiplier\": 1.0\n      }\n    }\n  },\n  \"metadata\": {\n    \"key\": \"value\"\n  }\n}\n"
       ]
    }

POST /fine_tuning/jobs

Creates a fine-tuning job which begins the process of creating a new model from a given dataset.

Response includes details of the enqueued job including job status and the name of the fine-tuned models once complete.

Learn more about fine-tuning

Operation ID

createFineTuningJob

$client->createFineTuningJob( ... );

Parameters

Request Body

Content Type: application/json

Models

The name of the model to fine-tune. You can select one of the supported models.

  • babbage-002

  • davinci-002

  • gpt-3.5-turbo

  • gpt-4o-mini

Example:

{
   "hyperparameters" : null,
   "integrations" : [
      {
         "wandb" : {
            "project" : "my-wandb-project",
            "tags" : [
               "custom-tag"
            ]
         }
      }
   ],
   "method" : {
      "dpo" : {
         "hyperparameters" : null
      },
      "supervised" : {
         "hyperparameters" : null
      }
   },
   "model" : "gpt-4o-mini",
   "seed" : 42,
   "training_file" : "file-abc123",
   "validation_file" : "file-abc123"
}


         

Responses

Status Code: 200

OK

Content Types:

  • application/json

    Example (See the OpenAI spec for more detail):

    {
      "object": "fine_tuning.job",
      "id": "ftjob-abc123",
      "model": "davinci-002",
      "created_at": 1692661014,
      "finished_at": 1692661190,
      "fine_tuned_model": "ft:davinci-002:my-org:custom_suffix:7q8mpxmy",
      "organization_id": "org-123",
      "result_files": [
          "file-abc123"
      ],
      "status": "succeeded",
      "validation_file": null,
      "training_file": "file-abc123",
      "hyperparameters": {
          "n_epochs": 4,
          "batch_size": 1,
          "learning_rate_multiplier": 1.0
      },
      "trained_tokens": 5768,
      "integrations": [],
      "seed": 0,
      "estimated_finish": 0,
      "method": {
        "type": "supervised",
        "supervised": {
          "hyperparameters": {
            "n_epochs": 4,
            "batch_size": 1,
            "learning_rate_multiplier": 1.0
          }
        }
      },
      "metadata": {
        "key": "value"
      }
    }

SEE ALSO

OpenAPI::Client::OpenAI::Path

COPYRIGHT AND LICENSE

Copyright (C) 2023-2025 by Nelson Ferraz

This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself, either Perl version 5.14.0 or, at your option, any later version of Perl 5 you may have available.