NAME
Math::AnyNum - Arbitrary size precision for integers, rationals, floating-points and complex numbers.
VERSION
Version 0.40
SYNOPSIS
Math::AnyNum provides a transparent and easy-to-use interface to Math::GMPz, Math::GMPq, Math::MPFR and Math::MPC, along with a decent number of useful mathematical functions.
use 5.016;
use Math::AnyNum qw(:overload factorial);
# Integers
say factorial(30); #=> 265252859812191058636308480000000
# Floating-point numbers
say sqrt(1 / factorial(100)); #=> 1.0351378111756264713204945[...]e-79
# Rational numbers
my $x = 2/3;
say ($x * 3); #=> 2
say (2 / $x); #=> 3
say $x; #=> 2/3
# Complex numbers
say 3 + 4*i; #=> 3+4i
say sqrt(-4); #=> 2i
say log(-1); #=> 3.1415926535897932384626433832[...]i
DESCRIPTION
Math::AnyNum focuses primarily on providing a friendly interface and good performance. In most cases, it can be used as a drop-in replacement for the bignum and bigrat pragmas.
The philosophy of Math::AnyNum is that mathematics should just work, therefore the support for complex numbers is virtually transparent, without requiring any explicit conversions. All the conversions are done implicitly, using a fairly sophisticated promotion system, which tries really hard to do the right thing and as efficiently as possible.
Additionally, each Math::AnyNum object is immutable.
FUNCTIONS
:ntheory
binomial(n,k) binomial coefficient
multinomial(@list) multinomial coefficient
factorial(n) product of first n positive integers: n!
dfactorial(n) double-factorial: n!!
mfactorial(n,k) multi-factorial: n*(n-k)*(n-2k)*...
subfactorial(n) number of derangements: !n
subfactorial(n,k) number of derangements with k fixed points
superfactorial(n) product of first n factorials
hyperfactorial(n) product of k^k for k=1..n
rising_factorial(n,k) rising factorial: n^(k)
falling_factorial(n,k) falling factorial: (n)_k
bell(n) n-th Bell number
catalan(n) n-th Catalan number
catalan(n,k) C(n,k) entry in Catalan's triangle
lucas(n) n-th Lucas number
lucasmod(n,m) n-th Lucas number modulo m
lucasU(P,Q,n) Lucas U_n(P, Q) function
lucasV(P,Q,n) Lucas V_n(P, Q) function
lucasUmod(P,Q,n,m) Lucas U_n(P, Q) modulo m
lucasVmod(P,Q,n,m) Lucas V_n(P, Q) modulo m
fibonacci(n) n-th Fibonacci number
fibonacci(n,k) n-th Fibonacci number of k-th order
fibmod(n,m) n-th Fibonacci number modulo m
polygonal(n,k) n-th k-gonal number
harmonic(n) n-th harmonic number: 1 + 1/2 + ... + 1/n
secant_number(n) n-th secant/zig number
tangent_number(n) n-th tangent/zag number
euler(n) n-th Euler number: E_n
euler(n,x) Euler polynomials: E_n(x)
bernoulli(n) n-th Bernoulli number: B_n
bernoulli(n,x) Bernoulli polynomials: B_n(x)
faulhaber(n,x) Faulhaber polynomials: F_n(x)
laguerreL(n,x) Laguerre polynomials: L_n(x)
legendreP(n,x) Legendre polynomials: P_n(x)
hermiteH(n,x) Physicists' Hermite polynomials: H_n(x)
hermiteHe(n,x) Probabilists' Hermite polynomials: He_n(x)
chebyshevT(n,x) Chebyshev polynomials of the 1st kind: T_n(x)
chebyshevU(n,x) Chebyshev polynomials of the 2nd kind: U_n(x)
chebyshevTmod(n,x,m) Modular Chebyshev polynomials of the 1st kind: T_n(x)
chebyshevUmod(n,x,m) Modular Chebyshev polynomials of the 2nd kind: U_n(x)
faulhaber_sum(n,k) sum of powers: 1^k + 2^k + ... + n^k
geometric_sum(n,r) geometric sum: r^0 + r^1 + ... + r^n
dirichlet_sum(n,f,g,F,G) Dirichlet hyperbola method
kronecker(n,k) Kronecker (Jacobi) symbol
lcm(@list) least common multiple
gcd(@list) greatest common divisor
gcdext(n,k) return (u,v,d) where u*n+v*k=d
iadd(a,b) integer addition: a+b
isub(a,b) integer subtraction: a-b
imul(a,b) integer multiplication: a*b
idiv(a,b) floor division: floor(a/b)
idiv_ceil(a,b) ceil division: int(a/b)
idiv_round(a,b) round division: int(a/b)
idiv_trunc(a,b) truncated division: trunc(a/b)
imod(a,b) integer remainder: a%b
ipow(n,k) integer exponentiation: n^k
ipow2(k) integer exponentiation: 2^k
ipow10(k) integer exponentiation: 10^k
iroot(n,k) integer k-th root of n
isqrt(n) integer square root of n
icbrt(n) integer cube root of n
ilog(n,k) integer logarithm of n to base k
ilog2(n) integer logarithm of n to base 2
ilog10(n) integer logarithm of n to base 10
addmod(a,b,m) modular integer addition: (a+b)%m
submod(a,b,m) modular integer subtraction: (a-b)%m
mulmod(a,b,m) modular integer multiplication: (a*b)%m
divmod(a,b,m) modular integer division: (a/b)%m
divmod(a,b) quotient and remainder of a/b
invmod(n,m) multiplicative inverse of n modulo m
powmod(a,b,m) modular exponentiation: a ^ b mod m
isqrtrem(n) integer sqrt remainder: n - isqrt(n)^2
irootrem(n,k) integer root remainder: n - iroot(n,k)^k
is_square(n) return 1 if n is a perfect square
is_power(n) return 1 if n = c^k for integers c, k > 1
is_power(n,k) return 1 if n = c^k for integers c, k
is_polygonal(n,k) return 1 if n is a first k-gonal number
is_polygonal2(n,k) return 1 if n is a second k-gonal number
is_coprime(n,k) return 1 if gcd(n,k) = 1
is_rough(n,B) return 1 if all prime factors of n are >= B
is_smooth(n,B) return 1 if all prime factors of n are <= B
is_smooth_over_prod(n,k) return 1 if n is smooth over the primes p|k
rough_part(n,B) largest B-rough divisor of n
smooth_part(n,B) largest B-smooth divisor of n
make_coprime(n,k) largest divisor of n coprime to k
is_prime(n,r=23) Miller-Rabin primality test
primorial(n) product of primes <= n
next_prime(n) next prime > n
valuation(n,k) number of times n is divisible by k
remdiv(n,k) n / k^valuation(n,k)
ipolygonal_root(n,k) first integer k-gonal root of n
ipolygonal_root2(n,k) second integer k-gonal root of n
:special
beta(x,y) Beta function
eta(x) Dirichlet eta function η(x)
gamma(x) Gamma function Γ(x)
lgamma(x) natural logarithm of abs(Γ(x))
lngamma(x) natural logarithm of Γ(x)
lnsuperfactorial(n) natural logarithm of superfactorial(n)
lnhyperfactorial(n) natural logarithm of hyperfactorial(n)
digamma(x) Digamma function ψ(x)
zeta(x) Zeta function ζ(x)
Ai(x) Airy function
Ei(x) exponential integral function
Li(x) logarithmic integral function
Li2(x) dilogarithm function
lgrt(x) logarithmic-root: lgrt(x^x) = x
LambertW(x) Lambert W function
BesselJ(x,n) first order Bessel function J_n(x)
BesselY(x,n) second order Bessel function Y_n(x)
pow(x,y) power function: x^y
sqr(x) square function: x^2
sqrt(x) square root function: x^(1/2)
cbrt(x) cube root function: x^(1/3)
root(x,y) root function: x^(1/y)
exp(x) exponential function: e^x
exp2(x) exponential function: 2^x
exp10(x) exponential function: 10^x
ln(x) natural logarithm of x
log(x,y) logarithm of x to base y
log2(x) logarithm of x to base 2
log10(x) logarithm of x to base 10
mod(x,y) remainder of x/y
polymod(n,@list) n modulo a list of numbers
erf(x) the Gauss error function
erfc(x) the complementary error function
abs(x) absolute value of x
agm(x,y) arithmetic-geometric mean
hypot(x,y) hypotenuse: sqrt(x^2 + y^2)
norm(x) normalized value of x: abs(x)^2
lnbern(n) natural logarithm of bernoulli(n)
bernreal(n) Bernoulli number as floating-point
harmreal(n) Harmonic number as floating-point
polygonal_root(n,k) first k-gonal root of n
polygonal_root2(n,k) second k-gonal root of n
:trig
sin(x) trigonometric sine function
cos(x) trigonometric cosine function
tan(x) trigonometric tangent function
csc(x) trigonometric cosecant function
sec(x) trigonometric secant function
cot(x) trigonometric cotangent function
asin(x) inverse of trigonometric sine
acos(x) inverse of trigonometric cosine
atan(x) inverse of trigonometric tangent
acsc(x) inverse of trigonometric cosecant
asec(x) inverse of trigonometric secant
acot(x) inverse of trigonometric cotangent
sinh(x) hyperbolic sine function
cosh(x) hyperbolic cosine function
tanh(x) hyperbolic tangent function
csch(x) hyperbolic cosecant function
sech(x) hyperbolic secant function
coth(x) hyperbolic cotangent function
asinh(x) inverse of hyperbolic sine
acosh(x) inverse of hyperbolic cosine function
atanh(x) inverse of hyperbolic tangent
acsch(x) inverse of hyperbolic cosecant
asech(x) inverse of hyperbolic secant
acoth(x) inverse of hyperbolic cotangent
atan2(x,y) two-argument variant of arctangent
rad2deg(x) convert radians to degrees
deg2rad(x) convert degrees to radians
:misc
rand(a) pseudorandom floating-point: 0 <= R < a
rand(a,b) pseudorandom floating-point: a <= R < b
irand(a) pseudorandom integer: 0 <= R <= a
irand(a,b) pseudorandom integer: a <= R <= b
seed(n) re-seed the `rand()` function
iseed(n) re-seed the `irand()` function
int(x) truncate x to an integer
floor(x) round x towards -Infinity
ceil(x) round x towards +Infinity
round(x) round x to the nearest integer
round(x,+k) round x to k places before the decimal point
round(x,-k) round x to k places after the decimal point
acmp(a,b) absolute comparison: abs(a) <=> abs(b)
approx_cmp(a,b,k) approximate comparison: round(a,k) <=> round(b,k)
rat(x) convert x to a rational number
rat(str) parse a decimal expansion as an exact fraction
rat_approx(x) rational approximation of a real number x
ratmod(r,m) rational modular operation as an integer: r % m
numerator(r) numerator of rational number r
denominator(r) denominator of rational number r
nude(r) numerator and denominator of r
float(x) convert x to a floating-point number
complex(x) convert x to a floating-point complex number
complex(a,b) complex number: a + b*i
real(z) real part of complex number z
imag(z) imaginary part of complex number z
reals(z) real and imaginary part of z as reals
sgn(x) -1 if x < 0; 0 if x = 0; 1 if x > 0
neg(x) additive inverse of x: -x
inv(x) multiplicative inverse of x: 1/x
conj(x) complex conjugate of x
digits(n,b) digits of n in base b
digits2num(\@d,b) conversion of digits in base b to an integer
sumdigits(n,b) sum of digits of n in base b
popcount(n) number of 1's in binary representation of n
hamdist(n,k) number of bit-positions where the bits differ
getbit(n,k) k-th bit of integer n (1 or 0)
setbit(n,k) set the k-th bit of integer n to 1
clearbit(n,k) set the k-th bit of integer n to 0
flipbit(n,k) flip the k-th bit of integer n
bit_scan0(n,k) index of the first 0-bit of n with index >= k
bit_scan1(n,k) index of the first 1-bit of n with index >= k
min(@list) minimum value from a given list of numbers
max(@list) maximum value from a given list of numbers
sum(@list) sum of a list of numbers
prod(@list) product of a list of numbers
bsearch(n,\&f) binary search from 0 to n (exact match)
bsearch(a,b,\&f) binary search from a to b (exact match)
bsearch_le(n,\&f) binary search from 0 to n (less than or equal to)
bsearch_le(a,b,\&f) binary search from a to b (less than or equal to)
bsearch_ge(n,\&f) binary search from 0 to n (greater than or equal to)
bsearch_ge(a,b,\&f) binary search from a to b (greater than or equal to)
base(n,b) string-representation of n in base b
as_bin(n) binary string-representation of n
as_oct(n) octal string-representation of n
as_hex(n) hexadecimal string-representation of n
as_int(n,b) integer string-representation of n in base b
as_rat(n,b) rational string-representation of n in base b
as_frac(n,b) fraction string-representation of n in base b
as_dec(n,d) decimal string-expansion of n with d digits
is_pos(n) return 1 if n > 0
is_neg(n) return 1 if n < 0
is_int(n) return 1 if n is an integer
is_rat(n) return 1 if n is a rational number
is_real(n) return 1 if n is a real number
is_imag(n) return 1 if n is an imaginary number
is_complex(n) return 1 if n is a complex number
is_inf(n) return 1 if n is +Infinity
is_ninf(n) return 1 if n is -Infinity
is_nan(n) return 1 if n is Not-a-Number (NaN)
is_zero(n) return 1 if n = 0
is_one(n) return 1 if n = 1
is_mone(n) return 1 if n = -1
is_even(n) return 1 if n is an integer divisible by 2
is_odd(n) return 1 if n is an integer not divisible by 2
is_div(n,k) return 1 if n is exactly divisible by k
is_congruent(n,k,m) return 1 if n is congruent to k mod m
EXPORT
Each function can be exported individually, as:
use Math::AnyNum qw(zeta);
There is also the possibility of exporting an entire group of functions, as:
use Math::AnyNum qw(:trig);
Additionally, by specifying the :all
keyword, will export all the exportable functions and all the constants.
use Math::AnyNum qw(:all);
The :overload
keyword enables constant overloading, which makes each number a Math::AnyNum object and also exports the i
, Inf
and NaN
constants:
use Math::AnyNum qw(:overload);
say 42; #=> "42" (as Int)
say 1/2; #=> "1/2" (as Rat)
say 0.5; #=> "0.5" (as Float)
say 3 + 4*i; #=> "3+4i" (as Complex)
NOTE: :overload
is lexical to the current scope only.
The syntax for disabling the :overload
behavior in the current scope, is:
no Math::AnyNum; # :overload will be disabled in the current scope
In addition to the exportable functions, Math::AnyNum also provides a list with useful mathematical constants that can be exported, such as:
i # imaginary unit sqrt(-1)
e # e mathematical constant 2.718281828459...
pi # PI constant 3.141592653589...
tau # TAU constant 6.283185307179...
ln2 # natural logarithm of 2 0.693147180559...
phi # golden ratio 1.618033988749...
EulerGamma # Euler-Mascheroni constant 0.577215664901...
CatalanG # Catalan G constant 0.915965594177...
Inf # positive Infinity
NaN # Not-a-Number
The syntax for exporting a constant, is:
use Math::AnyNum qw(pi);
say pi; # 3.141592653589...
Nothing is exported by default.
HOW IT WORKS
Internally, each Math::AnyNum object holds a reference to an object of type Math::GMPz, Math::GMPq, Math::MPFR or Math::MPC. Based on the internal types, it decides what functions to call on each operation and does automatic promotion whenever is necessary.
The promotion rules can be summarized as follows:
(Integer, Integer) -> Integer | Rational | Float | Complex
(Integer, Rational) -> Rational | Float | Complex
(Integer, Float) -> Float | Complex
(Integer, Complex) -> Complex
(Rational, Rational) -> Rational | Float | Complex
(Rational, Float) -> Float | Complex
(Rational, Complex) -> Complex
(Float, Float) -> Float | Complex
(Float, Complex) -> Complex
(Complex, Complex) -> Complex
For explicit conversions, Math::AnyNum provides the following functions:
int(x) # converts x to an integer (NaN if not possible)
rat(x) # converts x to a rational (NaN if not possible)
float(x) # converts x to a real or complex floating-point number
complex(x) # converts x to a complex floating-point number
PRECISION
The default precision for floating-point numbers is 192 bits, which is equivalent with about 50 digits of precision in base 10.
The precision can be changed by modifying the $Math::AnyNum::PREC
variable, such as:
local $Math::AnyNum::PREC = 1024;
or by specifying the precision at import (this sets the precision globally):
use Math::AnyNum PREC => 1024;
This precision is used internally whenever a Math::MPFR
or a Math::MPC
object is created.
For example, if we change the precision to 3 decimal digits (where 4
is the conversion factor), we get the following results:
local $Math::AnyNum::PREC = 3*4;
# Floating-points
say sqrt(2); #=> 1.41
say sqrt(19+13*i); #=> 4.58+1.42i
# Integers
say 98**7; #=> 86812553324672
# Rationals
say 1 / 98**7 #=> 1/86812553324672
Notice that integers and rational numbers do not obey this precision, because they can grow and shrink dynamically, without a specific limit.
Furthermore, a rational number never losses precision or accuracy in rational operations, therefore if we say:
my $x = 1/3;
say $x*3; #=> 1
say 1/$x; #=> 3
say 3/$x; #=> 9
...the results are exact.
NOTATIONS
Methods that begin with an i followed by the actual name (e.g.: isqrt
), do integer operations, by first truncating their arguments to integers, if necessary.
The returned types are noted as follows:
Any # any type of number
Int # an integer value
Rat # a rational value
Float # a floating-point value
Complex # a floating-point complex value
NaN # "Not-a-Number" value
Inf # +/-Infinity
Bool # a Boolean value (1 or 0)
Scalar # a Perl scalar
When two or more types are separated with pipe characters (|), it means that the corresponding function can return any of the specified types.
INITIALIZATION / CONSTANTS
This section includes methods for creating new Math::AnyNum objects and some useful mathematical constants.
new
Math::AnyNum->new(n) #=> Any
Math::AnyNum->new(n, base) #=> Any
Returns a new AnyNum object with the value specified in the first argument, which can be a Perl numerical value, a string representing a number in a rational form, such as "1/2"
, a string holding a decimal expansion number, such as "0.5"
, a string holding an integer, such as "255"
or a string holding a complex number, such as "3+4i"
or "(3 4)"
.
my $z = Math::AnyNum->new('42'); # integer
my $r = Math::AnyNum->new('3/4'); # rational
my $f = Math::AnyNum->new('12.34'); # float
my $c = Math::AnyNum->new('3.1+4i'); # complex
The second argument specifies the base of the number, which must be between 2 and 62.
When no base is specified, it defaults to base 10.
For setting an hexadecimal number, we can say:
my $n = Math::AnyNum->new("deadbeef", 16);
NOTE: no prefix, such as "0x"
or "0b"
, is allowed as part of the number.
new_si
Math::AnyNum->new_si(n) #=> Int
Sets a signed native integer.
Example:
my $n = Math::AnyNum->new_si(-42);
new_ui
Math::AnyNum->new_ui(n) #=> Int
Sets an unsigned native integer.
Example:
my $n = Math::AnyNum->new_ui(42);
new_z
Math::AnyNum->new_z(str) #=> Int
Math::AnyNum->new_z(str, base) #=> Int
Sets an arbitrary large integer from a given string.
The second argument specifies the base of the number, which must be between 2 and 62.
When no base is specified, it defaults to base 10.
Example:
my $n = Math::AnyNum->new_z("12345678910111213141516");
my $m = Math::AnyNum->new_z("fffffffffffffffffff", 16);
new_q
Math::AnyNum->new_q(frac) #=> Rat
Math::AnyNum->new_q(num, den) #=> Rat
Math::AnyNum->new_q(num, den, base) #=> Rat
Sets an arbitrary large rational from a given string.
The third argument specifies the base of the number, which must be between 2 and 62.
When no base is specified, it defaults to base 10.
Example:
my $n = Math::AnyNum->new_q('12345/67890'); # 823/4526
my $m = Math::AnyNum->new_q('12345', '67890'); # 823/4526
my $o = Math::AnyNum->new_q('fffff', 'aaaaa', 16); # 1048575/699050 = 3/2
new_f
Math::AnyNum->new_f(str) #=> Float
Math::AnyNum->new_f(str, base) #=> Float
Sets a floating-point real number from a given string.
The second argument specifies the base of the number, which must be between 2 and 62.
When no base is specified, it defaults to base 10.
Example:
my $n = Math::AnyNum->new_f('12.345'); # 12.345
my $m = Math::AnyNum->new_f('-1.2345e-12'); # -0.0000000000012345
my $o = Math::AnyNum->new_f('ffffff', 16); # 16777215
new_c
Math::AnyNum->new_c(real) #=> Complex
Math::AnyNum->new_c(real, imag) #=> Complex
Math::AnyNum->new_c(real, imag, base) #=> Complex
Sets a complex number from a given string.
The third argument specifies the base of the number, which must be between 2 and 62.
When no base is specified, it defaults to base 10.
Example:
my $n = Math::AnyNum->new_c('1.123'); # 1.123
my $m = Math::AnyNum->new_c('3', '4'); # 3+4i
my $o = Math::AnyNum->new_c('f', 'a', 16); # 15+10i
nan
Math::AnyNum->nan #=> NaN
Returns an object holding the NaN
value.
inf
Math::AnyNum->inf #=> Inf
Returns an object representing positive infinity.
ninf
Math::AnyNum->ninf #=> -Inf
Returns an object representing negative infinity.
one
Math::AnyNum->one #=> Int
Returns an object containing the value 1
.
mone
Math::AnyNum->mone #=> Int
Returns an object containing the value -1
.
zero
Math::AnyNum->zero #=> Int
Returns an object containing the value 0
.
i
Math::AnyNum->i #=> Complex
Returns the imaginary unit, which is sqrt(-1)
.
e
Math::AnyNum->e #=> Float
Returns the e mathematical constant, which is 2.718...
.
pi
Math::AnyNum->pi #=> Float
Returns the number PI, which is 3.1415...
.
tau
Math::AnyNum->tau #=> Float
Returns the number TAU, which is 2*pi
.
ln2
Math::AnyNum->ln2 #=> Float
Returns the natural logarithm of 2
.
phi
Math::AnyNum->phi #=> Float
Returns the value of the golden ratio, which is 1.61803...
.
EulerGamma
Math::AnyNum->EulerGamma #=> Float
Returns the Euler-Mascheroni γ constant, which is 0.57721...
.
CatalanG
Math::AnyNum->CatalanG #=> Float
Returns the Catalan G constant, also known as Beta(2)
, which is 0.91596...
.
ARITHMETIC OPERATIONS
This section includes basic arithmetic operations.
add
x + y #=> Any
Adds x
and y
and returns the result.
sub
x - y #=> Any
Subtracts y
from x
and returns the result.
mul
x * y #=> Any
Multiplies x
by y
and returns the result.
div
x / y #=> Any
Divides x
by y
and returns the result.
mod
x % y #=> Any
mod(x, y) #=> Any
Remainder of x
when is divided by y
. Returns NaN when y
is zero.
Implemented as:
x % y = x - y*floor(x/y)
polymod
polymod(n, a, b, c, ...) #=> (Any, Any, ..., Any)
Returns a list of mod results corresponding to the divisors in (a, b, c, ...)
. The divisors are given from smallest "unit" to the largest (e.g. 60 seconds per minute, 60 minutes per hour) and the results are returned in the same way: from smallest to the largest (5 seconds, 4 minutes).
Example:
my ($s, $m, $h, $d) = polymod($seconds, 60, 60, 24);
conj
conj(x) #=> Float | Complex
Complex conjugate of x
. Returns x
when x
is a real number.
Example:
conj("3+4i") = 3-4*i
inv
inv(x) #=> Any
Multiplicative inverse of x
. Equivalent with 1/x
.
neg
neg(x) #=> Any
Additive inverse of x
. Equivalent with -x
.
abs
abs(x) #=> Any
Absolute value of x
.
sqr
sqr(x) #=> Any
Multiplies x
with itself and returns the result. Equivalent with x*x
.
norm
norm(x) #=> Any
The square of the absolute value of x
. Equivalent with abs(x)**2
.
SPECIAL FUNCTIONS
This section includes the special functions.
sqrt
sqrt(x) #=> Float | Complex
Square root of x
. Returns a complex number when x
is negative.
cbrt
cbrt(x) #=> Float | Complex
Cube root of x
. Returns a complex number when x
is negative.
root
root(x, y) #=> Float | Complex
The y
root of x
. Equivalent with x**(1/y)
.
polygonal_root
polygonal_root(n, k) #=> Float | Complex
Returns the k-gonal root of n
. Also defined for complex numbers.
Example:
say polygonal_root($n, 3); # triangular root
say polygonal_root($n, 5); # pentagonal root
polygonal_root2
polygonal_root2(n, k) #=> Float | Complex
Returns the second k-gonal root of n
. Also defined for complex numbers.
Example:
say polygonal_root2($n, 5); # second pentagonal root
pow
x ** y #=> Any
pow(x, y) #=> Any
Raises x
to power y
and returns the result.
When x
and y
are both integers, it does integer exponentiation and returns the exact result.
When x
is rational and y
is an integer, it does rational exponentiation based on the identity: (a/b)**n = a**n / b**n
, which also computes the exact result.
Otherwise, it does floating-point exponentiation, which is equivalent with exp(log(x) * y)
.
exp
exp(x) #=> Float | Complex
Natural exponentiation of x
(i.e.: e**x
).
exp2
exp2(x) #=> Any
Raises 2 to the power x
. (i.e.: 2**x
)
exp10
exp10(x) #=> Any
Raises 10 to the power x
. (i.e.: 10**x
)
ln | log
ln(x) #=> Float | Complex
log(x) #=> Float | Complex
log(x, y) #=> Float | Complex
Logarithm of x
to base y
(or base e when y
is omitted).
NOTE: log(x, y)
is equivalent with log(x) / log(y)
.
log2 | log10
log2(x) #=> Float | Complex
log10(x) #=> Float | Complex
Logarithm of x
to base 2 and base 10, respectively.
lgrt
lgrt(x) #=> Float | Complex
Logarithmic-root of x
, which is the solution to a**a = x
, where x
is known. When the value of x
is less than e**(-1/e)
, it returns a complex number.
It also accepts a complex number as input.
Example:
lgrt(100) # solves for x in `x**x = 100` and returns: `3.59728...`
This function is related to the Lambert-W function via the following identities:
log(lgrt(exp(x))) = LambertW(x)
exp(LambertW(log(x))) = lgrt(x)
LambertW
LambertW(x) #=> Float | Complex
The Lambert-W function. When the value of x
is less than -1/e
, it returns a complex number.
It also accepts a complex number as input.
Identities (assuming x>0):
LambertW(exp(x)*x) = x
LambertW(log(x)*x) = log(x)
bernreal
bernreal(n) #=> Float
Returns the n-th Bernoulli number, as a floating-point approximation, with bernreal(1) = 0.5
.
lnbern
lnbern(n) #=> Float | Complex
Returns the natural logarithm of the n-th Bernoulli number.
harmreal
harmreal(n) #=> Float
Returns the n-th Harmonic number, as a floating-point approximation, for any real value of n
.
Returns NaN for negative integers.
Defined as:
harmreal(n) = digamma(n+1) + γ
where γ
is the Euler-Mascheroni constant.
agm
agm(x, y) #=> Float | Complex
Arithmetic-geometric mean of x
and y
. Also defined for complex numbers.
hypot
hypot(x, y) #=> Float | Complex
The value of the hypotenuse for catheti x
and y
. Equivalent to sqrt(x**2 + y**2)
. Also defined for complex numbers.
gamma
gamma(x) #=> Float
The Gamma function on x
. Returns Inf when x
is zero, and NaN when x
is a negative integer.
lgamma
lgamma(x) #=> Float
Natural logarithm of the absolute value of the Gamma function.
lngamma
lngamma(x) #=> Float
Natural logarithm of the Gamma function for which the logarithm is a real number. Returns NaN otherwise.
lnsuperfactorial
lnsuperfactorial(n) #=> Float
Natural logarithm of superfactorial(n)
, where n
is a non-negative integer.
lnhyperfactorial
lnsuperfactorial(n) #=> Float
Natural logarithm of hyperfactorial(n)
, where n
is a non-negative integer.
digamma
digamma(x) #=> Float
The Digamma function (sometimes called Psi). Returns NaN when x
is negative, and -Inf when x
is 0.
beta
beta(x, y) #=> Float
The beta function (also called the Euler integral of the first kind).
Defined as:
beta(x, y) = gamma(x)*gamma(y) / gamma(x+y)
zeta
zeta(x) #=> Float
The Riemann zeta function at x
. Returns Inf when x
is 1.
eta
eta(x) #=> Float
The Dirichlet eta function at x
.
Defined as:
eta(1) = ln(2)
eta(x) = (1 - 2**(1-x)) * zeta(x)
BesselJ
BesselJ(x, n) #=> Float
The first order Bessel function, J_n(x)
, where n
is a signed integer.
Example:
BesselJ(x, n) # represents J_n(x)
BesselY
BesselY(x, n) #=> Float
The second order Bessel function, Y_n(x)
, where n
is a signed integer. Returns NaN for negative values of x
.
Example:
BesselY(x, n) # represents Y_n(x)
erf
erf(x) #=> Float
The error function on x
.
erfc
erfc(x) #=> Float
Complementary error function on x
.
Ai
Ai(x) #=> Float
The Airy function on x
.
Ei
Ei(x) #=> Float
Exponential integral of x
. Returns -Inf when x
is zero, and NaN when x
is negative.
Li
Li(x) #=> Float
The logarithmic integral of x
, defined as: Ei(ln(x))
. Returns -Inf when x
is 1, and NaN when x
is less than or equal to 0
.
Li2
Li2(x) #=> Float
The dilogarithm function, defined as the integral of -log(1-t)/t
from 0
to x
.
TRIGONOMETRIC FUNCTIONS
sin | sinh | asin | asinh
sin(x) #=> Float | Complex
sinh(x) #=> Float | Complex
asin(x) #=> Float | Complex
asinh(x) #=> Float | Complex
Sine, hyperbolic sine, inverse sine and inverse hyperbolic sine.
cos | cosh | acos | acosh
cos(x) #=> Float | Complex
cosh(x) #=> Float | Complex
acos(x) #=> Float | Complex
acosh(x) #=> Float | Complex
Cosine, hyperbolic cosine, inverse cosine and inverse hyperbolic cosine.
tan | tanh | atan | atanh
tan(x) #=> Float | Complex
tanh(x) #=> Float | Complex
atan(x) #=> Float | Complex
atanh(x) #=> Float | Complex
Tangent, hyperbolic tangent, inverse tangent and inverse hyperbolic tangent.
cot | coth | acot | acoth
cot(x) #=> Float | Complex
coth(x) #=> Float | Complex
acot(x) #=> Float | Complex
acoth(x) #=> Float | Complex
Cotangent, hyperbolic cotangent, inverse cotangent and inverse hyperbolic cotangent.
sec | sech | asec | asech
sec(x) #=> Float | Complex
sech(x) #=> Float | Complex
asec(x) #=> Float | Complex
asech(x) #=> Float | Complex
Secant, hyperbolic secant, inverse secant and inverse hyperbolic secant.
csc | csch | acsc | acsch
csc(x) #=> Float | Complex
csch(x) #=> Float | Complex
acsc(x) #=> Float | Complex
acsch(x) #=> Float | Complex
Cosecant, hyperbolic cosecant, inverse cosecant and inverse hyperbolic cosecant.
atan2
atan2(x, y) #=> Float | Complex
The arc tangent of x
and y
, defined as:
atan2(x, y) = -i * log((y + x*i) / sqrt(x^2 + y^2))
deg2rad
deg2rad(x) #=> Float | Complex
Returns the value of x
converted from degrees to radians.
Example:
deg2rad(180) = pi
rad2deg
rad2deg(x) #=> Float | Complex
Returns the value of x
converted from radians to degrees.
Example:
rad2deg(pi) = 180
INTEGER FUNCTIONS
All operations in this section are done with integers.
iadd | isub | imul | ipow
iadd(x, y) #=> Int | NaN
isub(x, y) #=> Int | NaN
imul(x, y) #=> Int | NaN
ipow(x, y) #=> Int | NaN
Integer addition, subtraction, multiplication and exponentiation.
idiv | idiv_ceil | idiv_round | idiv_trunc
idiv(x, y) #=> Int | NaN
idiv_ceil(x, y) #=> Int | NaN
idiv_trunc(x, y) #=> Int | NaN
idiv_round(x, y) #=> Int | NaN
Integer division: floor(a/b)
, ceil(a/b)
, trunc(a/b)
, round(a/b)
.
ipow2
ipow2(n) #=> Int
Raises 2
to the power n
, by first truncating n
to an integer. Returns 0
when n
is negative.
ipow10
ipow10(n) #=> Int
Raises 10
to the power n
, by first truncating n
to an integer. Returns 0
when n
is negative.
imod
imod(x, y) #=> Int | NaN
The integer modulus operation. Returns NaN when y
is zero.
addmod
addmod(a, b, m) #=> Int | NaN
Modular integer addition: (a+b) % m
.
say addmod(43, 97, 127) # == (43+97)%127
submod
submod(a,b,m) #=> Int | NaN
Modular integer subtraction: (a-b) % m
.
say submod(43, 97, 127) #=> (43-97)%127
mulmod
mulmod(a,b,m) #=> Int | NaN
Modular integer multiplication: (a*b) % m
.
say mulmod(43, 97, 127) # == (43*97)%127
divmod
divmod(a, b) #=> (Int, Int) | (NaN, NaN)
divmod(a, b, m) #=> (Int, Int) | (NaN, NaN)
When only two arguments are provided, it returns (idiv(a,b), imod(a,b))
.
When three arguments are given, it does integer modular division: (a/b) % m
.
say divmod(43, 97, 127) # == (43 * invmod(97, 127))%127
invmod
invmod(x, y) #=> Int | NaN
Computes the multiplicative inverse of x
modulo y
and returns the result.
When no inverse exists (i.e.: gcd(x, y) != 1
), the NaN value is returned.
powmod
powmod(x, y, z) #=> Int | NaN
Computes (x ** y) % z
, where all three values are integers.
Returns NaN when the third argument is 0, or when y
is negative and gcd(x, z) != 1
.
quadratic_powmod
quadratic_powmod(a, b, w, n, m) #=> Int | NaN
Computes (a + b*sqrt(w))**n % m
, returning (x,y)
satisfying:
x + y*sqrt(w) == (a + b*sqrt(w))**n (mod m)
isqrt | icbrt
isqrt(n) #=> Int | NaN
icbrt(n) #=> Int | NaN
The integer square root of n
and the integer cube root of n
. Returns NaN when a real root does not exist.
isqrtrem
isqrtrem(n) #=> (Int, Int) | (NaN, NaN)
The integer part of the square root of n
and the remainder n - isqrt(n)**2
, which will be zero when n
is a perfect square.
iroot
iroot(n, m) #=> Int | NaN
The integer m-th
root of n
. Returns NaN when a real does not exist.
irootrem
irootrem(n, m) #=> (Int, Int) | (NaN, NaN)
The integer part of the root of n
and the remainder n - iroot(n,m)**m
.
Returns (NaN,NaN)
when a real root does not exist.
ilog
ilog(n) #=> Int | NaN
ilog(n, m) #=> Int | NaN
The integer part of the logarithm of n
to base m
or base e when m
is not specified.
n
must be greater than 0 and m
must be greater than 1. Returns NaN otherwise.
ilog2 | ilog10
ilog2(n) #=> Int | NaN
ilog10(n) #=> Int | NaN
The integer part of the logarithm of n
to base 2
or base 10
, respectively.
and | or | xor | not | lsft | rsft
x & y #=> Int
x | y #=> Int
x ^ y #=> Int
~x #=> Int
x << y #=> Int
x >> y #=> Int
The bitwise integer operations.
lcm
lcm(@list) #=> Int
The least common multiple of a list of integers.
gcd
gcd(@list) #=> Int
The greatest common divisor of a list of integers.
gcdext
gcdext(n, k) #=> (Int, Int, Int)
The extended greatest common divisor of n
and k
, returning (u, v, d)
, where d
is the greatest common divisor of n
and k
, while u
and v
are the coefficients satisfying u*n + v*k = d
. The value of d
is always non-negative.
valuation
valuation(n, k) #=> Scalar
Returns the number of times n
is divisible by k
.
remdiv
remdiv(n, k) #=> Int
Removes all occurrences of the divisor k
from integer n
.
In general, the following statement holds true:
remdiv(n, k) == n / k**(valuation(n, k))
kronecker
kronecker(n, m) #=> Scalar
Returns the Kronecker symbol (n|m), which is a generalization of the Jacobi symbol for all integers m.
faulhaber_sum
faulhaber_sum(n, k) #=> Int | NaN
Computes the power sum 1^k + 2^k + 3^k +...+ n^k
, using Faulhaber's formula.
The value for k
must be a non-negative integer. Returns NaN otherwise.
Example:
faulhaber_sum(5, 2) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55
geometric_sum
geometric_sum(n, r) #=> Any
Computes the geometric sum 1 + r + r^2 + r^3 + ... + r^n
, using the following formula:
geometric_sum(n, r) = (r^(n+1) - 1) / (r - 1)
Example:
geometric_sum(5, 8) = 8^0 + 8^1 + 8^2 + 8^3 + 8^4 + 8^5 = 37449
dirichlet_sum
dirichlet_sum(n, \&f, \&g, \&F, \&G) #=> Int | NaN
Given two arithmetic functions f
and g
, it computes the following sum in O(sqrt(n))
steps:
Sum_{k=1..n} Sum_{d|k} f(d) * g(k/d)
The F
and G
functions are the partial sums of f
and g
, respectively:
F(n) = Sum_{k=1..n} f(k)
G(n) = Sum_{k=1..n} g(k)
However, this method is fast only when F(n)
and G(n)
can be computed efficiently.
Example:
# Computes:
# Sum_{k=1..10^9} sigma_2(k) (C.f. A188138)
dirichlet_sum(
10**9, # n
sub { 1 }, # f
sub { $_[0]**2 }, # g
sub { $_[0] }, # F(n) = Sum_{k=1..n} f(k)
sub { faulhaber_sum($_[0], 2) }, # G(n) = Sum_{k=1..n} g(k)
)
harmonic | harmfrac
harmonic(n) #=> Rat | NaN
Returns the n-th Harmonic number H_n
. The harmonic numbers are the sum of reciprocals of the first n
natural numbers: 1 + 1/2 + 1/3 + ... + 1/n
.
For values greater than 7000, binary splitting (Fredrik Johansson's elegant formulation) is used.
secant_number
secant_number(n) #=> Int
Returns the n-th secant number (A000364), starting with secant_number(0) = 1
.
tangent_number
tangent_number(n) #=> Int
Returns the n-th tangent number (A000182), starting with tangent_number(1) = 1
.
bernoulli_polynomial
bernoulli_polynomial(n, x) #=> Any
Returns the n-th Bernoulli polynomial: B_n(x)
.
faulhaber_polynomial | faulhaber
faulhaber_polynomial(n, x) #=> Any
Returns the n-th Faulhaber polynomial: F_n(x)
.
euler_polynomial
euler_polynomial(n, x) #=> Any
Returns the n-th Euler polynomial: E_n(x)
.
bernoulli | bernfrac
bernoulli(n) #=> Rat | NaN
bernoulli(n, x) #=> Any
Returns the n-th Bernoulli number B_n
as an exact fraction, with bernoulli(1) = 1/2
.
When an additional argument is provided, it returns the n-th Bernoulli polynomial: B_n(x)
.
euler
euler(n) #=> Rat | NaN
euler(n, x) #=> Any
Returns the n-th Euler number E_n
, starting with euler(0) = 1
.
When an additional argument is provided, it returns the n-th Euler polynomial: E_n(x)
.
lucas
lucas(n) #=> Int | NaN
The n-th Lucas number. Returns NaN when n
is negative.
lucasU
lucasU(P, Q, n) #=> Int | NaN
The Lucas U_n(P, Q)
function.
Example:
lucasU(1, -1, $n) # the Fibonacci numbers
lucasU(2, -1, $n) # the Pell numbers
lucasU(1, -2, $n) # the Jacobsthal numbers
lucasV
lucasV(P, Q, n) #=> Int | NaN
The Lucas V_n(P, Q)
function.
Example:
lucasV(1, -1, $n) # the Lucas numbers
lucasV(2, -1, $n) # the Pell-Lucas numbers
lucasV(1, -2, $n) # the Jacobsthal-Lucas numbers
lucasmod
lucasmod(n, m) #=> Int | NaN
Efficiently compute the n-th Lucas number modulo m.
lucasUmod
lucasUmod(P, Q, n, m) #=> Int | NaN
Efficiently compute the Lucas U_n(P, Q)
function modulo m.
lucasVmod
lucasVmod(P, Q, n, m) #=> Int | NaN
Efficiently compute the Lucas V_n(P, Q)
function modulo m.
fibonacci
fibonacci(n) #=> Int | NaN
fibonacci(n, k) #=> Int | NaN
The n-th Fibonacci number. Returns NaN when n
is negative.
When k
is specified, it returns the k-th order Fibonacci number.
Example:
say fibonacci(100, 3); # 100th Tribonacci number
say fibonacci(100, 4); # 100th Tetranacci number
say fibonacci(100, 5); # 100th Pentanacci number
fibmod
fibmod(n, m) #=> Int | NaN
Efficiently compute the n-th Fibonacci number modulo m.
chebyshevT
chebyshevT(n, x) #=> Any
Compute the Chebyshev polynomials of the first kind: T_n(x)
, where n
must be a native integer.
Defined as:
T(0, x) = 1
T(1, x) = x
T(n, x) = 2*x*T(n-1, x) - T(n-2, x)
chebyshevU
chebyshevU(n, x) #=> Any
Compute the Chebyshev polynomials of the second kind: U_n(x)
, where n
must be a native integer.
Defined as:
U(0, x) = 1
U(1, x) = 2*x
U(n, x) = 2*x*U(n-1, x) - U(n-2, x)
chebyshevTmod
chebyshevTmod(n, x, m) #=> Int | NaN
Compute the modular Chebyshev polynomials of the first kind: T_n(x) mod m
, where n
must be an integer.
chebyshevUmod
chebyshevUmod(n, x, m) #=> Int | NaN
Compute the modular Chebyshev polynomials of the second kind: U_n(x) mod m
, where n
must be an integer.
laguerreL
laguerreL(n, x) #=> Any
Compute the Laguerre polynomials: L_n(x)
, where n
must be a non-negative native integer.
legendreP
legendreP(n, x) #=> Any
Compute the Legendre polynomials: P_n(x)
, where n
must be a non-negative native integer.
hermiteH
hermiteH(n, x) #=> Any
Compute the physicists' Hermite polynomials: H_n(x)
, where n
must be a non-negative native integer.
hermiteHe
hermiteHe(n, x) #=> Any
Compute the probabilists' Hermite polynomials: He_n(x)
, where n
must be a non-negative native integer.
factorial
factorial(n) #=> Int | NaN
Factorial of n
(denoted as n!
). Returns NaN when n
is negative. (1*2*3*...*n
)
dfactorial
dfactorial(n) #=> Int | NaN
Double-factorial of n
(denoted as n!!
). Returns NaN when n
is negative. (requires GMP>=5.1.0)
Example:
dfactorial(7) # 1*3*5*7 = 105
dfactorial(8) # 2*4*6*8 = 384
mfactorial
mfactorial(n, m) #=> Int | NaN
Generalized m-factorial of n
. Returns NaN when n
or m
is negative. (requires GMP>=5.1.0)
subfactorial
subfactorial(n) #=> Int | NaN
subfactorial(n, k) #=> Int | NaN
The number of permutations of {1, ..., n}
that have exactly k
fixed points, given a positive integer n
and an optional integer k
(if k
is omitted, then k=0
).
See also:
superfactorial
superfactorial(n) #=> Int | NaN
Product of first n
factorials: Prod_{k=1..n} k!
.
hyperfactorial
hyperfactorial(n) #=> Int | NaN
Hyperfactorial of n
, defined as: Prod_{k=1..n} k^k
.
bell
bell(n) #=> Int | NaN
Returns the n-th Bell number.
catalan
catalan(n) #=> Int | NaN
catalan(n, k) #=> Int | NaN
Returns the n-th Catalan number.
If two arguments are provided, it returns the C(n,k)
entry in Catalan's triangle.
binomial
binomial(n, k) #=> Int | NaN
Computes the binomial coefficient n
over k
, also called the "choose" function. The result is equivalent to:
n!
binomial(n, k) = -------
k!(n-k)!
multinomial
multinomial(a, b, c, ...) #=> Int | NaN
Computes the multinomial coefficient, given a list of native integers.
Example:
multinomial(1, 4, 4, 2) = 34650
See also:
rising_factorial
rising_factorial(n, k) #=> Int | Rat | NaN
Rising factorial, n * (n + 1) * ... * (n + k - 1)
, defined as:
binomial(n + k - 1, k) * k!
For negative values of k
, rising factorial is defined as:
rising_factorial(n, -k) = 1/rising_factorial(n - k, k)
When the denominator is zero, NaN is returned.
falling_factorial
falling_factorial(n, k) #=> Int | Rat | NaN
Falling factorial, n * (n - 1) * ... * (n - k + 1)
, defined as:
binomial(n, k) * k!
For negative values of k
, falling factorial is defined as:
falling_factorial(n, -k) = 1/falling_factorial(n + k, k)
When the denominator is zero, NaN is returned.
primorial
primorial(n) #=> Int | NaN
Returns the product of all the primes less than or equal to n
. (requires GMP>=5.1.0)
next_prime
next_prime(n) #=> Int | NaN
Returns the next prime after n
.
is_prime
is_prime(n, r=23) #=> Scalar
Returns 2 if n
is definitely prime, 1 if n
is probably prime (without being certain), or 0 if n
is definitely composite.
This method does some trial divisions, then r
Miller-Rabin probabilistic primality tests.
A higher r
value reduces the chances of a composite being identified as "probably prime". Reasonable values of r
are between 20 and 50.
Starting with GMP 6.2.0, a Baillie-PSW probable prime test is performed, which has no known counter-examples. By specifying a value of r > 24, if n
passes the B-PSW test, r-24
additional Miller-Rabin tests are performed.
See also:
is_coprime
is_coprime(n, k) #=> Bool
Returns true when n
and k
are relatively prime to each other. That is, when gcd(n, k) == 1
.
make_coprime
make_coprime(n, k) #=> Int | NaN
Returns the largest divisor of n
that is coprime to k
.
is_rough
is_rough(n, k) #=> Bool
Returns true when all the prime factors of n
are greater than or equal to k
, where n
and k
are positive integers.
Equivalently, it returns true if the smallest prime factor of n
is greater than or equal to k
.
Example:
is_rough(55, 7) # false : 55 = 5 * 11, where 5 < 7
is_rough(35, 5) # true : 35 = 5 * 7
is_smooth
is_smooth(n, k) #=> Bool
Returns true when all the prime factors of n
are less than or equal to k
, where n
and k
are positive integers.
Equivalently, it returns true if the largest prime factor of n
is less than or equal to k
.
Example:
is_smooth(36, 3) # true : 36 = 2^2 * 3^2
is_smooth(39, 6) # false : 39 = 3 * 13, where 13 > 6
is_smooth_over_prod
is_smooth_over_prod(n, k) #=> Bool
Returns true if n
can be expressed as a product of primes dividing k
.
Equivalently, it returns true if gcd(rad(n), rad(k)) == rad(n)
.
Example:
is_smooth_over_prod(42, 2*3*7*11) # true because 42 = 2*3*7
is_smooth_over_prod(75, 3*5) # true because 75 = 3*5*5
is_smooth_over_prod($n, 3*5*7*11) # true for odd 11-smooth numbers $n
smooth_part
smooth_part(n, k) #=> Int | NaN
Returns the largest divisor of n
that is k
-smooth.
Example:
smooth_part(3*3*5*7, 5) # 45 (= 3*3*5)
smooth_part(5*7*7*11, 6) # 5
rough_part
rough_part(n, k) #=> Int | NaN
Returns the largest divisor of n
that is k
-rough.
Example:
rough_part(3*3*5*7, 5) # 35 (= 5*7)
rough_part(5*7*7*11, 6) # 539 (= 7*7*11)
is_square
is_square(n) #=> Bool
Returns true when n
is a perfect square. When n
is not an integer, a false value is returned.
is_power
is_power(n) #=> Bool
is_power(n, k) #=> Bool
Returns true when n
is a perfect power of a given integer k
.
When n
is not an integer, it always returns false. On the other hand, when k
is not an integer, it will implicitly be truncated to an integer. If k
is not positive after truncation, 0
is returned.
A true value is returned iff there exists some integer a
satisfying the equation: a**k = n
.
When k
is not specified, it returns true if n
can be expressed as a**b
for some integers a
and b
, with b
greater than 1.
Example:
is_power(100, 2) # true: 100 is a square (10**2)
is_power(125, 3) # true: 125 is a cube ( 5**3)
is_power(279841) # true: 279841 is 23**4
is_power_of
is_power_of(n, b) #=> Bool
Return true if n
is a power of b
, such that n = b**k
for some k >= 0.
Example:
64->is_power_of(2) # true: 64 is a power of 2 (64 = 2**6)
27->is_power_of(3) # true: 27 is a power of 3 (27 = 3**3)
polygonal
polygonal(n, k) #=> Int
Returns the nth k-gonal number. When n
is negative, it returns the second k-gonal number.
Example:
say join(' ', map { polygonal( $_, 3) } 1..10); # triangular numbers
say join(' ', map { polygonal( $_, 5) } 1..10); # pentagonal numbers
say join(' ', map { polygonal(-$_, 5) } 1..10); # second pentagonal numbers
ipolygonal_root
ipolygonal_root(n, k) #=> Int | NaN
Integer k-gonal root of n
. Returns NaN when a real root does not exist.
Example:
say ipolygonal_root($n, 5); # integer pentagonal root
say ipolygonal_root(polygonal(10, 5), 5); # prints: "10"
ipolygonal_root2
ipolygonal_root2(n, k) #=> Int | NaN
Second integer k-gonal root of n
. Returns NaN when a real root does not exist.
Example:
say ipolygonal_root2($n, 5); # second integer pentagonal root
say ipolygonal_root2(polygonal(-10, 5), 5); # prints: "-10"
is_polygonal
is_polygonal(n, k) #=> Bool
Returns true when n
is a k-gonal number.
The values of n
and k
can be any arbitrary large integers.
Example:
say is_polygonal(145, 5); #=> 1 ("145" is a pentagonal number)
say is_polygonal(155, 5); #=> 0
is_polygonal2
is_polygonal2(n, k) #=> Bool
Returns true when n
is a second k-gonal number.
The values of n
and k
can be any arbitrary large integers.
Example:
say is_polygonal2(145, 5); #=> 0
say is_polygonal2(155, 5); #=> 1 ("155" is a second-pentagonal number)
MISCELLANEOUS
This section includes various useful methods.
min | max
min(@list) #=> Any
max(@list) #=> Any
Smallest and greatest value, respectively, from a given list of numbers.
Returns undef
if the list contains NaN
or if the list is empty.
sum | prod
sum(@list) #=> Any
prod(@list) #=> Any
Sum and product of a given list of numbers.
bsearch
bsearch(n, \&f) #=> Int | undef
bsearch(a, b, \&f) #=> Int | undef
Binary search from to 0
to n
, or from a
to b
, which can be any arbitrary large integers.
The last argument is a subroutine reference which does the comparisons.
This function finds a value k
such that f(k) = 0. Returns undef
otherwise.
bsearch(20, sub { $_*$_ <=> 49 }); #=> 7 (7*7 = 49)
bsearch(3, 1000, sub { $_**$_ <=> 3125 }); #=> 5 (5**5 = 3125)
bsearch_le
bsearch_le(n, \&f) #=> Int | undef
bsearch_le(a, b, \&f) #=> Int | undef
Binary search from to 0
to n
, or from a
to b
, which can be any arbitrary large integers.
The last argument is a subroutine reference which does the comparisons.
This function finds a value k
such that f(k) <= 0 and f(k+1) > 0. Returns undef
otherwise.
bsearch_le(10**6, sub { exp($_) <=> 1e+9 }); #=> 20 (exp( 20) <= 1e+9)
bsearch_le(-10**6, 10**6, sub { exp($_) <=> 1e-9 }); #=> -21 (exp(-21) <= 1e-9)
bsearch_ge
bsearch_ge(n, \&f) #=> Int | undef
bsearch_ge(a, b, \&f) #=> Int | undef
Binary search from to 0
to n
, or from a
to b
, which can be any arbitrary large integers.
The last argument is a subroutine reference which does the comparisons.
This function finds a value k
such that f(k-1) < 0 and f(k) >= 0. Returns undef
otherwise.
bsearch_ge(10**6, sub { exp($_) <=> 1e+9 }); #=> 21 (exp( 21) >= 1e+9)
bsearch_ge(-10**6, 10**6, sub { exp($_) <=> 1e-9 }); #=> -20 (exp(-20) >= 1e-9)
floor
floor(x) #=> Any
Returns x
if x
is an integer, otherwise it rounds x
towards -Infinity.
Example:
floor( 2.5) = 2
floor(-2.5) = -3
ceil
ceil(x) #=> Any
Returns x
if x
is an integer, otherwise it rounds x
towards +Infinity.
Example:
ceil( 2.5) = 3
ceil(-2.5) = -2
round
round(x) #=> Any
round(x, p) #=> Any
Rounds x
to the nth place. A negative argument rounds that many digits after the decimal point, while a positive argument rounds that many digits before the decimal point.
Example:
round('1234.567') = 1235
round('1234.567', 2) = 1200
round('3.123+4.567i', -2) = 3.12+4.57*i
rand
rand(x) #=> Float
rand(x, y) #=> Float
Returns a pseudorandom floating-point value. When an additional argument is provided, it returns a number between x
(inclusive) and y
(exclusive). Otherwise, returns a number between 0
(inclusive) and x
(exclusive).
If x
is greater than y
, the returned value will be in the range [y, x)
.
The PRNG behind this function is called the "Mersenne Twister". Although it generates pseudorandom numbers of very good quality, it is NOT cryptographically secure. You should not rely on it in security-sensitive situations.
Example:
rand(10) # a pseudorandom floating-point in the interval [0, 10)
rand(10, 20) # a pseudorandom floating-point in the interval [10, 20)
irand
irand(x) #=> Int
irand(x, y) #=> Int
Returns a pseudorandom integer. Unlike the rand()
function, irand()
is inclusive in both sides.
When an additional argument is provided, it returns an integer between x
(inclusive) and y
(inclusive), otherwise returns an integer between 0
(inclusive) and x
(inclusive).
If x
is greater than y
, the returned integer will be in the range [y, x]
.
The PRNG behind this function is called the "Mersenne Twister". Although it generates high-quality pseudorandom integers, it is NOT cryptographically secure. You should not rely on it in security-sensitive situations.
Example:
irand(10) # a pseudorandom integer in the interval [0, 10]
irand(10, 20) # a pseudorandom integer in the interval [10, 20]
seed | iseed
seed(n) #=> Int
iseed(n) #=> Int
Reseeds the rand()
and the irand()
function, respectively, with the value of n
, which can be any arbitrary large integer.
Returns back the integer part of n
. If n
cannot be truncated to an integer, the method dies with an appropriate error message.
sgn
sgn(x) #=> Scalar | Complex
Returns -1
when x
is negative, 1
when x
is positive, and 0
when x
is zero.
When x
is a complex number, it computes the sign using the identity:
sgn(x) = x / abs(x)
length
$n->length #=> Scalar
$n->length($base) #=> Scalar
Returns the number of digits of the integer part of n
in a given base (default 10).
Example:
5040->length # size in base 10
5040->length(2) # size in base 2
Returns undef
when n
cannot be truncated to an integer.
inc
++$x #=> Any
$x++ #=> Any
Returns x + 1
.
dec
--$x #=> Any
$x-- #=> Any
Returns x - 1
.
copy
$x->copy #=> Any
Returns a deep-copy of the self-object.
popcount
popcount(n) #=> Scalar
Returns the population count of the positive integer part of x
, which is the number of 1's in its binary representation.
Returns undef
when n
cannot be truncated to an integer.
This value is also known as the Hamming weight value.
Example:
popcount(0b1011) = 3
hamdist
hamdist(n, k) #=> Scalar
Returns the Hamming distance (number of bit-positions where the bits differ) between integers n
and k
.
Returns undef
when n
or k
cannot be truncated to an integer.
getbit
getbit(n, k) #=> Bool
Returns 1 if bit k
of n
is set, and 0 if it is not set.
Returns undef
when n
cannot be truncated to an integer or when k
is negative.
Example:
getbit(0b1001, 0) = 1
getbit(0b1000, 0) = 0
setbit
setbit(n, k) #=> Int
Returns a copy of n
with bit k
set to 1.
Example:
setbit(0b1000, 0) = 0b1001
setbit(0b1000, 2) = 0b1100
flipbit
flipbit(n, k) #=> Int
Returns a copy of n
with bit k
inverted.
Example:
flipbit(0b1000, 0) = 0b1001
flipbit(0b1001, 0) = 0b1000
clearbit
clearbit(n, k) #=> Int
Returns a copy of n
with bit k
set to 0.
Example:
clearbit(0b1001, 0) = 0b1000
clearbit(0b1100, 2) = 0b1000
bit_scan0 | bit_scan1
bit_scan0(n, k) #=> Scalar
bit_scan1(n, k) #=> Scalar
Scan n
, starting from bit index k
, towards more significant bits, until 0 or 1 bit (respectively) is found.
When k
is omitted, k=0
is assumed.
Returns undef
if n
cannot be truncated to an integer or if k
is negative.
* Introspection
is_int
is_int(x) #=> Bool
Returns true when x
is an integer.
is_rat
is_rat(x) #=> Bool
Returns true when x
is a rational number.
is_real
is_real(x) #=> Bool
Returns true when x
is a real number (i.e.: when the imaginary part is zero and it holds a real value in the real part).
Example:
is_real(complex('4')) # true
is_real(complex('4i')) # false (is imaginary)
is_real(complex('3+4i')) # false (is complex)
is_imag
Returns true when x
is an imaginary number (i.e.: when the real part is zero and it has a non-zero imaginary part).
Example:
is_imag(complex('4')) # false (is real)
is_imag(complex('4i')) # true
is_imag(complex('3+4i')) # false (is complex)
is_complex
is_complex(x) #=> Bool
Returns true when x
is a complex number (i.e.: when the real part and the imaginary part are non-zero).
Example:
is_complex(complex('4')) # false (is real)
is_complex(complex('4i')) # false (is imaginary)
is_complex(complex('3+4i')) # true
is_even
is_even(n) #=> Bool
Returns true when n
is a real integer divisible by 2.
is_odd
is_odd(n) #=> Bool
Returns true when n
is a real integer not divisible by 2.
is_div
is_div(n, k) #=> Bool
Returns true when n
is exactly divisible by k
(i.e.: when the remainder n % k
is zero).
Also defined for rationals, floats and complex numbers.
is_congruent
is_congruent(n, k, m) #=> Bool
Returns true when n
is congruent to k
modulo m
(i.e.: when the remainder n % m
equals k % m
).
Also defined for rationals, floats and complex numbers.
is_pos
is_pos(x) #=> Bool
Returns true when x
is positive.
is_neg
is_neg(x) #=> Bool
Returns true when x
is negative.
is_zero
is_zero(n) #=> Bool
Returns true when n
equals 0.
is_one
is_one(n) #=> Bool
Returns true when n
equals 1.
is_mone
is_mone(n) #=> Bool
Returns true when n
equals -1.
is_inf
is_inf(x) #=> Bool
Returns true when x
holds the positive Infinity special value.
is_ninf
is_ninf(x) #=> Bool
Returns true when x
holds the negative Infinity special value.
is_nan
is_nan(x) #=> Bool
Returns true when x
holds the Not-a-Number special value.
* Conversions
int
int(x) #=> Int | NaN
Returns the integer part of x
. Returns NaN when x
cannot be truncated to an integer.
rat
rat(x) #=> Rat | NaN
rat(str) #=> Rat | NaN
Converts x
to a rational number. Returns NaN when this conversion is not possible.
When the given argument is a decimal expansion string, it will be specially parsed as an exact fraction.
If x
is a floating-point real number, consider using rat_approx()
instead.
Example:
rat('0.5') = 1/2
rat('1234/5678') = 617/2839
rat_approx
rat_approx(n) #=> Rat | NaN
Given a real number n
, it returns a very good (sometimes exact) rational approximation to n
, computed with continued fractions.
Example:
rat_approx(3.14) = 22/7
rat_approx(zeta(-5)) = -1/252
Returns NaN when n
is not a real number.
ratmod
ratmod(r, m) #=> Int | NaN
Given a rational number r
and an integer m
, it returns r % m
computed as an integer.
Example:
ratmod('43/97', 127) = 79
Equivalent with:
(numerator($r) * invmod(denominator($r), $m)) % $m
float
float(x) #=> Float | Complex
float(str) #=> Float | Complex
Converts x
to a real or a complex floating-point number (in this order).
Example:
float(3.1415926) = 3.1415926 (as Float)
float('777/222') = 3.5 (as Float)
float('123+45i') = 123 + 45*i (as Complex)
complex
complex(x) #=> Complex
complex(str) #=> Complex
complex(x, y) #=> Complex
Converts x
to a complex number. When a second argument is given, it sets x
as the real part and y
as the imaginary part.
If x
or y
are complex numbers, the function returns the result of x + y*i
.
Example:
complex("3+4i") = 3+4*i
complex(3, 4) = 3+4*i
complex("5+2i", "-4i") = 9+2*i
stringify
"$x" #=> Scalar
Returns a string representing the value of x
, in base 10.
boolify
!!$x #=> Bool
Returns a false value when the number is zero or when the value of the number is NaN
. True otherwise.
numify
$x->numify #=> Scalar
Returns a Perl numerical scalar containing the value of x
, truncated if necessary.
If x
is an integer that fits inside a native signed or unsigned integer, the returned result will be exact, otherwise the result is returned as a double, with possible truncation.
If x
is a complex number, only the real part is considered.
base
base(n, b) #=> Scalar
Returns a string-representation of n
in a given base b
(between 2 and 62), where n
can be any type of number, including a floating-point or a complex number.
Example:
base(42, 2) = "101010"
base(17.5, 36) = "h.i"
base("99/43", 16) = "63/2b"
base("17.5+5i", 36) = "(h.i 5)"
The output of this function can be passed to new(), along with the base-number, which converts it back to the original number:
say Math::AnyNum->new("101010", 2); #=> 42
say Math::AnyNum->new("h.i", 36); #=> 17.5
as_bin
as_bin(n) #=> Scalar
Returns a string representing the integer part of n
in binary (base 2).
Example:
as_bin(42) = "101010"
Returns undef
when n
cannot be converted to an integer.
as_oct
as_oct(n) #=> Scalar
Returns a string representing the integer part of n
in octal (base 8).
Example:
as_oct(42) = "52"
Returns undef
when n
cannot be converted to an integer.
as_hex
as_hex(n) #=> Scalar
Returns a string representing the integer part of n
in hexadecimal (base 16).
Example:
as_hex(42) = "2a"
Returns undef
when n
cannot be converted to an integer.
as_int
as_int(n) #=> Scalar
as_int(n, b) #=> Scalar
Returns the integer part of n
as a string, in a given base, where the base must be between 2 and 62.
When the base is omitted, it defaults to base 10.
Example:
as_int(255) = "255"
as_int(255, 16) = "ff"
Returns undef
when n
cannot be converted to an integer.
as_rat
as_rat(n) #=> Scalar
as_rat(n, b) #=> Scalar
Returns n
as a rational string-representation in a given base, where the base must be between 2 and 62.
When the base is omitted, it defaults to base 10.
Example:
as_rat(42) = "42"
as_rat("2/4") = "1/2"
as_rat(255, 16) = "ff"
Returns undef
when n
cannot be converted to a rational number.
as_frac
as_frac(n) #=> Scalar | undef
as_frac(n, b) #=> Scalar | undef
Returns n
as a fraction in a given base, where the base must be between 2 and 62.
When the base is omitted, it defaults to base 10.
Example:
as_frac(42) = "42/1"
as_frac("2/4") = "1/2"
as_frac(255, 16) = "ff/1"
Returns undef
when n
cannot be converted to a rational number.
as_dec
as_dec(n) #=> Scalar
as_dec(n, digits) #=> Scalar
Returns n
as a decimal expansion string, with an optional number of digits.
When the second argument is undefined, it uses the default precision.
The value of n
can also be a complex number.
Example:
as_dec(1/2) = "0.5"
as_dec(sqrt(2), 3) = "1.41"
* Dissections
numerator
numerator(x) #=> Int | NaN
Returns the numerator of x
as a signed Math::AnyNum
object. When x
is not a rational number, it tries to convert it to a rational. Returns NaN when this conversion is not possible.
Example:
numerator("-42") = -42
numerator("-3/4") = -3
denominator
denominator(x) #=> Int | NaN
Returns the denominator of x
as an unsigned Math::AnyNum
object. When x
is not a rational number, it tries to convert it to a rational. Returns NaN when this conversion is not possible.
Example:
denominator("-42") = 1
denominator("-3/4") = 4
nude
nude(x) #=> (Int | NaN, Int | NaN)
Returns the numerator and the denominator of x
.
Example:
nude("42") = (42, 1)
nude("-3/4") = (-3, 4)
real
real(x) #=> Any
Returns the real part of x
.
Example:
real("42") = 42
real("42i") = 0
real("3-4i") = 3
imag
imag(x) #=> Any
Returns the imaginary part of x
, if any. Otherwise, returns zero.
Example:
imag("42") = 0
imag("42i") = 42
imag("3-4i") = -4
reals
reals(x) #=> (Any, Any)
Returns the real and the imaginary part of x
as real numbers.
Example:
reals("42") = (42, 0)
reals("42i") = (0, 42)
reals("3-4i") = (3, -4)
digits
digits(n) #=> (Scalar, Scalar, ...)
digits(n, b) #=> (Scalar | Int, Scalar | Int, ...)
Returns a list with the digits of n
in a given base. When no base is specified, it defaults to base 10.
Only the absolute integer part of n
is considered.
The value of b
must be greater than 1
. Returns an empty list otherwise.
Example:
digits(12345) = (5, 4, 3, 2, 1)
digits(12345, 100) = (45, 23, 1)
digits2num
digits2num([...], b=10) #=> Int | NaN
Takes an array-ref of digits (in reverse order) and an optional base (default 10), converting the digits to an integer in the given base.
The value of b
must be greater than 1
. Returns NaN otherwise.
Example:
digits2num([5, 4, 3, 2, 1]) = 12345
digits2num([45, 23, 1], 100) = 12345
sumdigits
sumdigits(n) #=> Int | NaN
sumdigits(n, b) #=> Int | NaN
Sum the digits of n
in a given base. When no base is specified, it defaults to base 10.
Only the absolute integer part of n
is considered.
The value of b
must be greater than 1
. Returns NaN otherwise.
Example:
sumdigits(12345) = 15
sumdigits(12345, 100) = 69
* Comparisons
eq
x == y #=> Bool
Equality check: returns a true value when x
and y
are equal.
ne
x != y #=> Bool
Inequality check: returns a true value when x
and y
are not equal.
gt
x > y #=> Bool
Returns true when x
is greater than y
.
ge
x >= y #=> Bool
Returns true when x
is equal or greater than y
.
lt
x < y #=> Bool
Returns true when x
is less than y
.
le
x <= y #=> Bool
Returns true when x
is equal or less than y
.
cmp
x <=> y #=> Scalar
Compares x
to y
and returns a negative value when x
is less than y
, 0 when x
and y
are equal, and a positive value when x
is greater than y
.
Complex numbers are compared as:
(real(x) <=> real(y)) ||
(imag(x) <=> imag(y))
Comparing anything to NaN (including NaN itself), returns undef
.
acmp
acmp(x, y) #=> Scalar
Absolute comparison of x
and y
.
Defined as:
acmp(x, y) = abs(x) <=> abs(y)
approx_cmp
approx_cmp(x, y) #=> Scalar
approx_cmp(x, y, k) #=> Scalar
Approximate comparison, by rounding the values of x
and y
at a given number of decimal places.
A negative value for k
rounds that many digits after the decimal point, while a positive value rounds before the decimal point.
When no value is given for k
, it uses the default precision - 1.
PERFORMANCE
The performance varies greatly, but, in most cases, Math::AnyNum is between 2x up to 10x faster than Math::BigFloat with the GMP backend, and about 100x faster than Math::BigFloat without the GMP backend (to be modest).
Math::AnyNum is fast because of the following facts:
minimal overhead in object creations and conversions.
minimal Perl code is executed per operation.
the GMP, MPFR and MPC libraries are extremely efficient.
To achieve the best performance, try to:
use the i* functions/methods wherever applicable.
use floating-point numbers when accuracy is not important.
pass Perl integers as arguments to methods, if you can.
MOTIVATION
This module came into existence as a response to Dana Jacobsen's request for a transparent interface to Math::GMPz and Math::MPFR, which he talked about at the YAPC NA, in 2015.
See his great presentation at: https://www.youtube.com/watch?v=Dhl4_Chvm_g.
The main aim of this module is to provide a fast and correct alternative to Math::BigInt, Math::BigFloat and Math::BigRat, as well as to bigint, bignum and bigrat pragmas.
The original project was called Math::BigNum
, but because of some design flaws, that project was abandoned and much of its code ended up in this module.
SEE ALSO
Fast math libraries
Math::GMP - High speed arbitrary size integer math.
Math::GMPz - perl interface to the GMP library's integer (mpz) functions.
Math::GMPq - perl interface to the GMP library's rational (mpq) functions.
Math::MPFR - perl interface to the MPFR (floating point) library.
Math::MPC - perl interface to the MPC (multi precision complex) library.
Portable math libraries
Math::BigInt - Arbitrary size integer/float math package.
Math::BigFloat - Arbitrary size floating point math package.
Math::BigRat - Arbitrary big rational numbers.
Math utilities
Math::Prime::Util - Utilities related to prime numbers, including fast sieves and factoring.
Math::GComplex - Generic library for complex number operations, with support for Gaussian integers.
REPOSITORY
https://github.com/trizen/Math-AnyNum
AUTHOR
Daniel Șuteu, <trizen at cpan.org>
COPYRIGHT AND LICENSE
Copyright (C) 2017-2021 Daniel Șuteu
This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself, either Perl version 5.22.0 or, at your option, any later version of Perl 5 you may have available.